Patents by Inventor Rajesh Kumar Krishnan

Rajesh Kumar Krishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11743037
    Abstract: A system and method for performing differential phase shift in a quantum network are disclosed. The method includes determining a quantum key distribution (QKD) configuration for a quantum signal comprising a series of pulses based on signal amplitude, signal pulse width and block length. Further, the method includes grouping pulses to generate quantum signal blocks based on determined QKD configuration. The method includes assigning a random label to each of the quantum signal block based on the determined quantum key distribution configuration. Also, the method includes performing hybrid phase modulation to each of the pulses individually and to each of the quantum signal blocks with a defined phase difference between the each of the pulses individually and each of the quantum signal blocks. The hybrid phase modulation is performed based on the assigned random label. Further, the method includes transmitting the hybrid phase modulated quantum signal blocks to receiving units.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: August 29, 2023
    Inventors: Anindita Banerjee, Rajesh Kumar Krishnan
  • Patent number: 11595200
    Abstract: A system and method for securely distributing quantum keys in a network are disclosed. The method includes receiving request for generating pair of quantum keys between source quantum node and target quantum node. Further, the method includes generating first pair of quantum keys based on the request. The method includes transmitting the first pair of quantum keys to the intermediate quantum node using a first quantum link. The method further includes generating intermediate pair of quantum key based on events detected at the intermediate quantum node. The method further includes interleaving the intermediate pair of quantum key with the first pair of quantum keys. Also, the method includes generating a second pair of quantum keys comprising interleaved intermediate pair of quantum key and first pair of quantum keys. Further, the method includes encoding and transmitting the second pair of quantum keys to target quantum node using second quantum link.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: February 28, 2023
    Inventors: Karunakaran M T, Anindita Banerjee, Rajesh Kumar Krishnan
  • Publication number: 20230035266
    Abstract: A system and method for performing differential phase shift in a quantum network are disclosed. The method includes determining a quantum key distribution (QKD) configuration for a quantum signal comprising a series of pulses based on signal amplitude, signal pulse width and block length. Further, the method includes grouping pulses to generate quantum signal blocks based on determined QKD configuration. The method includes assigning a random label to each of the quantum signal block based on the determined quantum key distribution configuration. Also, the method includes performing hybrid phase modulation to each of the pulses individually and to each of the quantum signal blocks with a defined phase difference between the each of the pulses individually and each of the quantum signal blocks. The hybrid phase modulation is performed based on the assigned random label. Further, the method includes transmitting the hybrid phase modulated quantum signal blocks to receiving units.
    Type: Application
    Filed: July 29, 2021
    Publication date: February 2, 2023
    Inventors: Anindita Banerjee, Rajesh Kumar Krishnan
  • Publication number: 20230034274
    Abstract: A system and method for securely distributing quantum keys in a network are disclosed. The method includes receiving request for generating pair of quantum keys between source quantum node and target quantum node. Further, the method includes generating first pair of quantum keys based on the request. The method includes transmitting the first pair of quantum keys to the intermediate quantum node using a first quantum link. The method further includes generating intermediate pair of quantum key based on events detected at the intermediate quantum node. The method further includes interleaving the intermediate pair of quantum key with the first pair of quantum keys. Also, the method includes generating a second pair of quantum keys comprising interleaved intermediate pair of quantum key and first pair of quantum keys. Further, the method includes encoding and transmitting the second pair of quantum keys to target quantum node using second quantum link.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 2, 2023
    Inventors: Karunakaran M T, Anindita Banerjee, Rajesh Kumar Krishnan