Patents by Inventor Rajesh Kumar Saini

Rajesh Kumar Saini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140034309
    Abstract: A subterranean zone surrounding a well bore is fractured with a fracturing fluid. Micro proppant of 200 mesh or smaller is pumped into far field fractures of the subterranean zone and props the far field fractures open.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 6, 2014
    Inventors: Rajesh Kumar Saini, Bradley L. Todd, Jimmie D. Weaver, James W. Ogle, David Michael Loveless, Philip Nguyen
  • Publication number: 20140005080
    Abstract: A method of servicing a wellbore comprising placing a wellbore servicing fluid comprising a modified friction reducer into the wellbore. A modified friction reducer comprising a degradable polymer having functional degradable moieties, a polymer having a molecular weight of from about 5M to about 30M, a polymer having a PDI of from about 1.0 to about 2.5, a weakly crosslinked polymer, or combinations thereof.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: James William OGLE, Xiangnan YE, Pinmanee BOONTHEUNG, Rajesh Kumar SAINI, Narongsak TONMUKAYAKUL
  • Publication number: 20080210370
    Abstract: The present invention is directed to the creation of macroscopic materials and objects comprising aligned nanotube segments. The invention entails aligning single-wall carbon nanotube (SWNT) segments that are suspended in a fluid medium and then removing the aligned segments from suspension in a way that macroscopic, ordered assemblies of SWNT are formed. The invention is further directed to controlling the natural proclivity or nanotube segments to self assemble into or ordered structures by modifying the environment of the nanotubes and the history of that environment prior to and during the process. The materials and objects are “macroscopic” in that they are large enough to be seen without the aid of a microscope or of the dimensions of such objects.
    Type: Application
    Filed: August 16, 2007
    Publication date: September 4, 2008
    Inventors: Richard E. Smalley, Daniel T. Colbert, Ken A. Smith, Deron A. Walters, Michael J. Casavant, Chad B. Huffman, Boris I. Yakobson, Robert H. Hauge, Rajesh Kumar Saini, Wan-Ting Chiang, Xiao Chuan Qin
  • Patent number: 7288238
    Abstract: The present invention involves alewives of highly aligned single-wall carbon nanotubes (SWNT), process for making the same and compositions thereof. The present invention provides a method for effectively making carbon alewives, which are discrete, acicular-shaped aggregates of aligned single-wall carbon nanotubes and resemble the Atlantic fish of the same name. Single-wall carbon nanotube alewives can be conveniently dispersed in materials such as polymers, ceramics, metals, metal oxides and liquids. The process for preparing the alewives comprises mixing single-wall carbon nanotubes with 100% sulfuric acid or a superacid, heating and stirring, and slowly introducing water into the single-wall carbon nanotube/acid mixture to form the alewives. The alewives can be recovered, washed and dried. The properties of the single-wall carbon nanotubes are retained in the alewives.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: October 30, 2007
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Rajesh Kumar Saini, Ramesh Sivarajan, Robert H. Hauge, Virginia Angelica Davis, Matteo Pasquali, Lars Martin Ericson, Satish Kumar, Sreekumar Thaliyil Veedu
  • Patent number: 7125502
    Abstract: The present invention involves fibers of highly aligned single-wall carbon nanotubes and a process for making the same. The present invention provides a method for effectively dispersing single-wall carbon nanotubes. The process for dispersing the single-wall carbon nanotubes comprises mixing single-wall carbon nanotubes with 100% sulfuric acid or a superacid, heating and stirring under an inert, oxygen-free environment. The single-wall carbon nanotube/acid mixture is wet spun into a coagulant to form the single-wall carbon nanotube fibers. The fibers are recovered, washed and dried. The single-wall carbon nanotubes were highly aligned in the fibers, as determined by Raman spectroscopy analysis.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: October 24, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Rajesh Kumar Saini, Ramesh Sivarajan, Robert H. Hauge, Virginia Angelica Davis, Matteo Pasquali, Lars Martin Ericson
  • Patent number: 6790425
    Abstract: The present invention is directed to the creation of macroscopic materials and objects comprising aligned nanotube segments. The invention entails aligning single-wall carbon nanotube (SWNT) segments that are suspended in a fluid medium and then removing the aligned segments from suspension in a way that macroscopic, ordered assemblies of SWNT are formed. The invention is further directed to controlling the natural proclivity of nanotube segments to self assemble into ordered structures by modifying the environment of the nanotubes and the history of that environment prior to and during the process. The materials and objects are “macroscopic” in that they are large enough to be seen without the aid of a microscope or of the dimensions of such objects.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: September 14, 2004
    Assignee: Wiliam Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Ken A. Smith, Deron A. Walters, Michael J. Casavant, Chad B. Huffman, Boris I. Yakobson, Robert H. Hague, Rajesh Kumar Saini, Wan-Ting Chiang
  • Publication number: 20030170166
    Abstract: The present invention involves fibers of highly aligned single-wall carbon nanotubes and a process for making the same. The present invention provides a method for effectively dispersing single-wall carbon nanotubes. The process for dispersing the single-wall carbon nanotubes comprises mixing single-wall carbon nanotubes with 100% sulfuric acid or a superacid, heating and stirring under an inert, oxygen-free environment. The single-wall carbon nanotube/acid mixture is wet spun into a coagulant to form the single-wall carbon nanotube fibers. The fibers are recovered, washed and dried. The single-wall carbon nanotubes were highly aligned in the fibers, as determined by Raman spectroscopy analysis.
    Type: Application
    Filed: July 2, 2002
    Publication date: September 11, 2003
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Rajesh Kumar Saini, Ramesh Sivarajan, Robert H. Hauge, Virginia Angelica Davis, Matteo Pasquali, Lars Martin Ericson
  • Publication number: 20030133865
    Abstract: The present invention involves alewives of highly aligned single-wall carbon nanotubes (SWNT), process for making the same and compositions thereof. The present invention provides a method for effectively making carbon alewives, which are discrete, acicular-shaped aggregates of aligned single-wall carbon nanotubes and resemble the Atlantic fish of the same name. Single-wall carbon nanotube alewives can be conveniently dispersed in materials such as polymers, ceramics, metals, metal oxides and liquids. The process for preparing the alewives comprises mixing single-wall carbon nanotubes with 100% sulfuric acid or a superacid, heating and stirring, and slowly introducing water into the single-wall carbon nanotube/acid mixture to form the alewives. The alewives can be recovered, washed and dried. The properties of the single-wall carbon nanotubes are retained in the alewives.
    Type: Application
    Filed: July 2, 2002
    Publication date: July 17, 2003
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Rajesh Kumar Saini, Ramesh Sivarajan, Robert H. Hauge, Virginia A. Davis, Matteo Pasquali, Lars Martin Ericson, Satish Kumar, Sreekumar Thaliyil Veedu