Patents by Inventor Rajib Kumar Das

Rajib Kumar Das has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230397478
    Abstract: Various examples are provided related to electrical planarization of carbon nanotube thin films or networks. In one example, a method includes depositing one or more thin protective organic and/or inorganic layer across a nanotube film; disrupting electrical conductance of portions of the nanotube film by exposure of out-of-plane nanotubes to a planarization process that disrupts the electrical conductance through the one or more thin protective organic and/or inorganic layer; and removing the one or more thin protective organic and/or inorganic layer from the nanotube film.
    Type: Application
    Filed: May 19, 2023
    Publication date: December 7, 2023
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, Bo Liu, Max G. Lemaitre
  • Patent number: 10815576
    Abstract: Disclosed herein are various layered, carbon-containing materials for use in reducing carbon dioxide. In certain embodiments, the materials comprise single wall carbon nanotubes (SWNTs).
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: October 27, 2020
    Assignee: University of Florida Research Foundation, Incorporated
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, Svetlana V. Vasilyeva
  • Patent number: 10181614
    Abstract: An electrode comprises an acid treated, cathodically cycled carbon-comprising film or body. The carbon consists of single walled nanotubes (SWNTs), pyrolytic graphite, microcrystalline graphitic, any carbon that consists of more than 99% sp2 hybridized carbons, or any combination thereof. The electrode can be used in an electrochemical device functioning as an electrolyzer for evolution of hydrogen or as a fuel cell for oxidation of hydrogen. The electrochemical device can be coupled as a secondary energy generator into a system with a primary energy generator that naturally undergoes generation fluctuations. During periods of high energy output, the primary source can power the electrochemical device to store energy as hydrogen, which can be consumed to generate electricity as the secondary source during low energy output by the primary source. Solar cells, wind turbines and water turbines can act as the primary energy source.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: January 15, 2019
    Assignee: University of Florida Research Foundation, Incorporated
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, Yan Wang, Hai-Ping Cheng
  • Patent number: 10115972
    Abstract: An embodiment of the invention is an air cathode having a porous membrane with at least one hydrophobic surface that contacts a conductive catalytic film that comprises single walled carbon nanotubes (SWNTs) where the nanotubes are in intimate electrical contact. The conductive film can include fullerenes, metals, metal alloys, metal oxides, or electroactive polymers in addition to the SWNTs. In other embodiments of the invention the air cathode is a component of a metal-air battery or a fuel cell.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: October 30, 2018
    Assignee: University of Florida Research Foundation, Incorporated
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, John R. Reynolds, Ryan M. Walczak
  • Publication number: 20180019491
    Abstract: An electrode comprises an acid treated, cathodically cycled carbon-comprising film or body. The carbon consists of single walled nanotubes (SWNTs), pyrolytic graphite, microcrystalline graphitic, any carbon that consists of more than 99% sp2 hybridized carbons, or any combination thereof. The electrode can be used in an electrochemical device functioning as an electrolyser for evolution of hydrogen or as a fuel cell for oxidation of hydrogen. The electrochemical device can be coupled as a secondary energy generator into a system with a primary energy generator that naturally undergoes generation fluctuations. During periods of high energy output, the primary source can power the electrochemical device to store energy as hydrogen, which can be consumed to generate electricity as the secondary source during low energy output by the primary source. Solar cells, wind turbines and water turbines can act as the primary energy source.
    Type: Application
    Filed: August 4, 2017
    Publication date: January 18, 2018
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, Yan Wang, Hai-Ping Cheng
  • Patent number: 9768460
    Abstract: An electrode comprises an acid treated, cathodically cycled carbon-comprising film or body. The carbon consists of single walled nanotubes (SWNTs), pyrolytic graphite, microcrystalline graphitic, any carbon that consists of more than 99% sp2 hybridized carbons, or any combination thereof. The electrode can be used in an electrochemical device functioning as an electrolyzer for evolution of hydrogen or as a fuel cell for oxidation of hydrogen. The electrochemical device can be coupled as a secondary energy generator into a system with a primary energy generator that naturally undergoes generation fluctuations. During periods of high energy output, the primary source can power the electrochemical device to store energy as hydrogen, which can be consumed to generate electricity as the secondary source during low energy output by the primary source. Solar cells, wind turbines and water turbines can act as the primary energy source.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 19, 2017
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, Yan Wang, Hai-Ping Cheng
  • Patent number: 9742018
    Abstract: An electrode comprises an acid treated, cathodically cycled carbon-comprising film or body. The carbon consists of single walled nanotubes (SWNTs), pyrolytic graphite, microcrystalline graphitic, any carbon that consists of more than 99% sp2 hybridized carbons, or any combination thereof. The electrode can be used in an electrochemical device functioning as an electrolyser for evolution of hydrogen or as a fuel cell for oxidation of hydrogen. The electrochemical device can be coupled as a secondary energy generator into a system with a primary energy generator that naturally undergoes generation fluctuations. During periods of high energy output, the primary source can power the electrochemical device to store energy as hydrogen, which can be consumed to generate electricity as the secondary source during low energy output by the primary source. Solar cells, wind turbines and water turbines can act as the primary energy source.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: August 22, 2017
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, Yan Wang, Hai-Ping Cheng
  • Publication number: 20170005351
    Abstract: An electrode comprises an acid treated, cathodically cycled carbon-comprising film or body. The carbon consists of single walled nanotubes (SWNTs), pyrolytic graphite, microcrystalline graphitic, any carbon that consists of more than 99% sp2 hybridized carbons, or any combination thereof. The electrode can be used in an electrochemical device functioning as an electrolyser for evolution of hydrogen or as a fuel cell for oxidation of hydrogen. The electrochemical device can be coupled as a secondary energy generator into a system with a primary energy generator that naturally undergoes generation. fluctuations. During periods of high energy output, the primary source can power the electrochemical device to store energy as hydrogen, which can be consumed to generate electricity as the secondary source during low energy output by the primary source. Solar cells, wind turbines and water turbines can act as the primary energy source.
    Type: Application
    Filed: June 3, 2016
    Publication date: January 5, 2017
    Applicant: University of Florida Research
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, Yan Wang, Hai-Ping Cheng
  • Publication number: 20160281245
    Abstract: Disclosed herein are various layered, carbon-containing materials for use in reducing carbon dioxide. In certain embodiments, the materials comprise single wall carbon nanotubes (SWNTs).
    Type: Application
    Filed: November 20, 2014
    Publication date: September 29, 2016
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, Svetlana V. Vasilyeva
  • Patent number: 9368291
    Abstract: An highly porous electrically conducting film that includes a plurality of carbon nanotubes, nanowires or a combination of both. The highly porous electrically conducting film exhibits an electrical resistivity of less than 0.1 ?·cm at 25 C and a density of between 0.05 and 0.70 g/cm3. The film can exhibit a density between 0.50 and 0.85 g/cm3 and an electrical resistivity of less than 6×10?3 ?·cm at 25 C. Also included is a method of forming these highly porous electrically conducting films by forming a composite film using carbon nanotubes or nanowires and sacrificial nanoparticles or microparticles. At least a portion of the nanoparticles or microparticles are then removed from the composite film to form the highly porous electrically conducting film.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: June 14, 2016
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, John R. Reynolds, Rajib Kumar Das
  • Publication number: 20130273446
    Abstract: An electrode comprises an acid treated, cathodically cycled carbon-comprising film or body. The carbon consists of single walled nanotubes (SWNTs), pyrolytic graphite, microcrystalline graphitic, any carbon that consists of more than 99% sp2 hybridized carbons, or any combination thereof. The electrode can be used in an electrochemical device functioning as an electrolyser for evolution of hydrogen or as a fuel cell for oxidation of hydrogen. The electrochemical device can be coupled as a secondary energy generator into a system with a primary energy generator that naturally undergoes generation fluctuations. During periods of high energy output, the primary source can power the electrochemical device to store energy as hydrogen, which can be consumed to generate electricity as the secondary source during low energy output by the primary source. Solar cells, wind turbines and water turbines can act as the primary energy source.
    Type: Application
    Filed: December 16, 2011
    Publication date: October 17, 2013
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, Wang Yan, Hai-Ping Cheng
  • Publication number: 20120115049
    Abstract: An embodiment of the invention is an air cathode having a porous membrane with at least one hydrophobic surface that contacts a conductive catalytic film that comprises single walled carbon nanotubes (SWNTs) where the nanotubes are in intimate electrical contact. The conductive film can include fullerenes, metals, metal alloys, metal oxides, or electroactive polymers in addition to the SWNTs. In other embodiments of the invention the air cathode is a component of a metal-air battery or a fuel cell.
    Type: Application
    Filed: April 22, 2010
    Publication date: May 10, 2012
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Andrew Gabriel Rinzler, Rajib Kumar Das, John R. Reynolds, Ryan M. Walczak
  • Publication number: 20100207074
    Abstract: An highly porous electrically conducting film that includes a plurality of carbon nanotubes, nanowires or a combination of both. The highly porous electrically conducting film exhibits an electrical resistivity of less than 0.1 ?·cm at 25 C and a density of between 0.05 and 0.70 g/cm3. The film can exhibit a density between 0.50 and 0.85 g/cm3 and an electrical resistivity of less than 6×10?3 ?·cm at 25 C. Also included is a method of forming these highly porous electrically conducting films by forming a composite film using carbon nanotubes or nanowires and sacrificial nanoparticles or microparticles. At least a portion of the nanoparticles or microparticles are then removed from the composite film to form the highly porous electrically conducting film.
    Type: Application
    Filed: March 26, 2010
    Publication date: August 19, 2010
    Inventors: Andrew Gabriel Rinzler, John R. Reynolds, Rajib Kumar Das
  • Patent number: 7704479
    Abstract: An highly porous electrically conducting film that includes a plurality of carbon nanotubes, nanowires or a combination of both. The highly porous electrically conducting film exhibits an electrical resistivity of less than 0.1 O·cm at 25 C and a density of between 0.05 and 0.70 g/cm3. The film can exhibit a density between 0.50 and 0.85 g/cm3 and an electrical resistivity of less than 6×10?3 O·cm at 25 C. Also included is a method of forming these highly porous electrically conducting films by forming a composite film using carbon nanotubes or nanowires and sacrificial nanoparticles or microparticles. At least a portion of the nanoparticles or microparticles are then removed from the composite film to form the highly porous electrically conducting film.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: April 27, 2010
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Andrew G. Rinzler, John R. Reynolds, Rajib Kumar Das
  • Publication number: 20080299030
    Abstract: An highly porous electrically conducting film that includes a plurality of carbon nanotubes, nanowires or a combination of both. The highly porous electrically conducting film exhibits an electrical resistivity of less than 0.1 O·cm at 25 C and a density of between 0.05 and 0.70 g/cm3. The film can exhibit a density between 0.50 and 0.85 g/cm3 and an electrical resistivity of less than 6×1031 3 O·cm at 25 C. Also included is a method of forming these highly porous electrically conducting films by forming a composite film using carbon nanotubes or nanowires and sacrificial nanoparticles or microparticles. At least a portion of the nanoparticles or microparticles are then removed from the composite film to form the highly porous electrically conducting film.
    Type: Application
    Filed: September 12, 2007
    Publication date: December 4, 2008
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, John R. Reynolds, Rajib Kumar Das