Patents by Inventor Rajiv Bhawanji Jain
Rajiv Bhawanji Jain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12038962Abstract: Systems and methods for natural language processing are described. One or more embodiments of the present disclosure identify a claim from a document, wherein the claim corresponds to a topic, create a graph comprising a plurality of nodes having a plurality of node types and a plurality of edges having a plurality of edge types, wherein one of the nodes represents the claim, and wherein each of the edges represents a relationship between a corresponding pair of the nodes, encode the claim based on the graph using a graph convolutional network (GCN) to obtain an encoded claim, classify the claim by decoding the encoded claim to obtain a stance label that indicates a stance of the claim towards the topic, and transmit information indicating a viewpoint of the document towards the topic based on the stance label.Type: GrantFiled: July 23, 2021Date of Patent: July 16, 2024Assignee: ADOBE INC.Inventors: Joseph Barrow, Rajiv Bhawanji Jain, Nedim Lipka, Vlad Ion Morariu, Franck Dernoncourt, Varun Manjunatha
-
Publication number: 20240232525Abstract: Systems and methods for document classification are described. Embodiments of the present disclosure generate classification data for a plurality of samples using a neural network trained to identify a plurality of known classes; select a set of samples for annotation from the plurality of samples using an open-set metric based on the classification data, wherein the annotation includes an unknown class; and train the neural network to identify the unknown class based on the annotation of the set of samples.Type: ApplicationFiled: October 24, 2022Publication date: July 11, 2024Inventors: Rajiv Bhawanji Jain, Michelle Yuan, Vlad Ion Morariu, Ani Nenkova Nenkova, Smitha Bangalore Naresh, Nikolaos Barmpalios, Ruchi Deshpande, Ruiyi Zhang, Jiuxiang Gu, Varun Manjunatha, Nedim Lipka, Andrew Marc Greene
-
Patent number: 11995394Abstract: Systems and methods for document editing are provided. One aspect of the systems and methods includes obtaining a document and a natural language edit request. Another aspect of the systems and methods includes generating a structured edit command using a machine learning model based on the document and the natural language edit request. Yet another aspect of the systems and methods includes generating a modified document based on the document and the structured edit command, where the modified document includes a revision of the document that incorporates the natural language edit request.Type: GrantFiled: February 7, 2023Date of Patent: May 28, 2024Assignee: ADOBE INC.Inventors: Vlad Ion Morariu, Puneet Mathur, Rajiv Bhawanji Jain, Jiuxiang Gu, Franck Dernoncourt
-
Publication number: 20240135103Abstract: In implementations of systems for training language models and preserving privacy, a computing device implements a privacy system to predict a next word after a last word in a sequence of words by processing input data using a machine learning model trained on training data to predict next words after last words in sequences of words. The training data describes a corpus of text associated with clients and including sensitive samples and non-sensitive samples. The machine learning model is trained by sampling a client of the clients and using a subset of the sensitive samples associated with the client and a subset of the non-sensitive samples associated with the client to update parameters of the machine learning model. The privacy system generates an indication of the next word after the last word in the sequence of words for display in a user interface.Type: ApplicationFiled: February 23, 2023Publication date: April 25, 2024Applicant: Adobe Inc.Inventors: Franck Dernoncourt, Tong Sun, Thi kim phung Lai, Rajiv Bhawanji Jain, Nikolaos Barmpalios, Jiuxiang Gu
-
Publication number: 20240135096Abstract: Systems and methods for document classification are described. Embodiments of the present disclosure generate classification data for a plurality of samples using a neural network trained to identify a plurality of known classes; select a set of samples for annotation from the plurality of samples using an open-set metric based on the classification data, wherein the annotation includes an unknown class; and train the neural network to identify the unknown class based on the annotation of the set of samples.Type: ApplicationFiled: October 23, 2022Publication date: April 25, 2024Inventors: Rajiv Bhawanji Jain, Michelle Yuan, Vlad Ion Morariu, Ani Nenkova Nenkova, Smitha Bangalore Naresh, Nikolaos Barmpalios, Ruchi Deshpande, Ruiyi Zhang, Jiuxiang Gu, Varun Manjunatha, Nedim Lipka, Andrew Marc Greene
-
Publication number: 20240135165Abstract: One aspect of systems and methods for data correction includes identifying a false label from among predicted labels corresponding to different parts of an input sample, wherein the predicted labels are generated by a neural network trained based on a training set comprising training samples and training labels corresponding to parts of the training samples; computing an influence of each of the training labels on the false label by approximating a change in a conditional loss for the neural network corresponding to each of the training labels; identifying a part of a training sample of the training samples and a corresponding source label from among the training labels based on the computed influence; and modifying the training set based on the identified part of the training sample and the corresponding source label to obtain a corrected training set.Type: ApplicationFiled: October 18, 2022Publication date: April 25, 2024Inventors: Varun Manjunatha, Sarthak Jain, Rajiv Bhawanji Jain, Ani Nenkova Nenkova, Christopher Alan Tensmeyer, Franck Dernoncourt, Quan Hung Tran, Ruchi Deshpande
-
Publication number: 20230259708Abstract: Systems and methods for key-phrase extraction are described. The systems and methods include receiving a transcript including a text paragraph and generating key-phrase data for the text paragraph using a key-phrase extraction network. The key-phrase extraction network is trained to identify domain-relevant key-phrase data based on domain data obtained using a domain discriminator network. The systems and methods further include generating meta-data for the transcript based on the key-phrase data.Type: ApplicationFiled: February 14, 2022Publication date: August 17, 2023Inventors: Amir Pouran Ben Veyseh, Franck Dernoncourt, Walter W. Chang, Trung Huu Bui, Hanieh Deilamsalehy, Seunghyun Yoon, Rajiv Bhawanji Jain, Quan Hung Tran, Varun Manjunatha
-
Publication number: 20230154221Abstract: The technology described includes methods for pretraining a document encoder model based on multimodal self cross-attention. One method includes receiving image data that encodes a set of pretraining documents. A set of sentences is extracted from the image data. A bounding box for each sentence is generated. For each sentence, a set of predicted features is generated by using an encoder machine-learning model. The encoder model performs cross-attention between a set of masked-textual features for the sentence and a set of masked-visual features for the sentence. The set of masked-textual features is based on a masking function and the sentence. The set of masked-visual features is based on the masking function and the corresponding bounding box. A document-encoder model is pretrained based on the set of predicted features for each sentence and pretraining tasks. The pretraining tasks includes masked sentence modeling, visual contrastive learning, or visual-language alignment.Type: ApplicationFiled: November 16, 2021Publication date: May 18, 2023Inventors: Jiuxiang Gu, Ani Nenkova Nenkova, Nikolaos Barmpalios, Vlad Ion Morariu, Tong Sun, Rajiv Bhawanji Jain, Jason wen yong Kuen, Handong Zhao
-
Publication number: 20230033114Abstract: Systems and methods for natural language processing are described. One or more embodiments of the present disclosure identify a claim from a document, wherein the claim corresponds to a topic, create a graph comprising a plurality of nodes having a plurality of node types and a plurality of edges having a plurality of edge types, wherein one of the nodes represents the claim, and wherein each of the edges represents a relationship between a corresponding pair of the nodes, encode the claim based on the graph using a graph convolutional network (GCN) to obtain an encoded claim, classify the claim by decoding the encoded claim to obtain a stance label that indicates a stance of the claim towards the topic, and transmit information indicating a viewpoint of the document towards the topic based on the stance label.Type: ApplicationFiled: July 23, 2021Publication date: February 2, 2023Inventors: Joseph Barrow, Rajiv Bhawanji Jain, Nedim Lipka, Vlad Ion Morariu, Franck Dernoncourt, Varun Manjunatha
-
Patent number: 11227159Abstract: Introduced here are computer programs and associated computer-implemented techniques for creating visualizations to explain the outputs produced by models designed for object detection. To accomplish this, a graphics editing platform can obtain a reference output that identifies a region of pixels in a digital image that allegedly contains an object. Then, the graphics editing platform can compute the similarity between the reference output and a series of outputs generated by a model upon being applied to masked versions of the digital image. A visualization component can be produced based on the similarity.Type: GrantFiled: May 18, 2020Date of Patent: January 18, 2022Assignee: Adobe Inc.Inventors: Rajiv Bhawanji Jain, Vlad Ion Morariu, Vitali Petsiuk, Varun Manjunatha, Ashutosh Mehra, Vicente Ignacio Ordonez Roman
-
Publication number: 20210357644Abstract: Introduced here are computer programs and associated computer-implemented techniques for creating visualizations to explain the outputs produced by models designed for object detection. To accomplish this, a graphics editing platform can obtain a reference output that identifies a region of pixels in a digital image that allegedly contains an object. Then, the graphics editing platform can compute the similarity between the reference output and a series of outputs generated by a model upon being applied to masked versions of the digital image. A visualization component can be produced based on the similarity.Type: ApplicationFiled: May 18, 2020Publication date: November 18, 2021Inventors: Rajiv Bhawanji Jain, Vlad Ion Morariu, Vitali Petsiuk, Varun Manjunatha, Ashutosh Mehra, Vicente Ignacio Ordonez Roman