Patents by Inventor Rajiv Jain

Rajiv Jain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12265652
    Abstract: A method includes populating a template database with templates associated with template identifiers (IDs) identifying the templates. The method also includes generating a data model that references a template within the template database, where the data model includes a template ID referencing the template in the template database, and where the template includes a parameter field. The data model further includes a template parameter to apply to the parameter field and a digital signature for at least the template ID and the template parameter. The method also includes deploying the data model within a distributed ledger.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: April 1, 2025
    Assignee: Adobe Inc.
    Inventors: Songlin He, Tong Sun, Rajiv Jain, Nedim Lipka, Curtis Wigington, Anindo Roy
  • Publication number: 20250103813
    Abstract: This disclosure describes one or more implementations of systems, non-transitory computer-readable media, and methods that train a named entity recognition (NER) model with noisy training data through a self-cleaning discriminator model. For example, the disclosed systems utilize a self-cleaning guided denoising framework to improve NER learning on noisy training data via a guidance training set. In one or more implementations, the disclosed systems utilize, within the denoising framework, an auxiliary discriminator model to correct noise in the noisy training data while training an NER model through the noisy training data. For example, while training the NER model to predict labels from the noisy training data, the disclosed systems utilize a discriminator model to detect noisy NER labels and reweight the noisy NER labels provided for training in the NER model.
    Type: Application
    Filed: September 22, 2023
    Publication date: March 27, 2025
    Inventors: Ruiyi Zhang, Zhendong Chu, Vlad Morariu, Tong Yu, Rajiv Jain, Nedim Lipka, Jiuxiang Gu
  • Patent number: 12229399
    Abstract: Techniques are provided for generating a digital image of simulated handwriting using an encoder-decoder neural network trained on images of natural handwriting samples. The simulated handwriting image can be generated based on a style of a handwriting sample and a variable length coded text input. The style represents visually distinctive characteristics of the handwriting sample, such as the shape, size, slope, and spacing of the letters, characters, or other markings in the handwriting sample. The resulting simulated handwriting image can include the text input rendered in the style of the handwriting sample. The distinctive visual appearance of the letters or words in the simulated handwriting image mimics the visual appearance of the letters or words in the handwriting sample image, whether the letters or words in the simulated handwriting image are the same as in the handwriting sample image or different from those in the handwriting sample image.
    Type: Grant
    Filed: January 23, 2024
    Date of Patent: February 18, 2025
    Assignee: Adobe Inc.
    Inventors: Christopher Alan Tensmeyer, Rajiv Jain, Curtis Michael Wigington, Brian Lynn Price, Brian Lafayette Davis
  • Publication number: 20250013831
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that generates a temporal dependency graph. For example, the disclosed systems generate from a text document, a structural vector, a syntactic vector, and a semantic vector. In some embodiments, the disclosed systems generate a multi-dimensional vector by combining the various vectors. In these or other embodiments, the disclosed systems generate an initial dependency graph structure and an adjacency matrix utilizing an iterative deep graph learning model. Further, in some embodiments, the disclosed systems generate an entity-level relation matrix utilizing a convolutional graph neural network. Moreover, in some embodiments, the disclosed systems generate a temporal dependency graph from the entity-level relation matrix and the adjacency matrix.
    Type: Application
    Filed: October 24, 2023
    Publication date: January 9, 2025
    Inventors: Puneet Mathur, Vlad Morariu, Verena Kaynig-Fittkau, Jiuxiang Gu, Franck Dernoncourt, Quan Tran, Ani Nenkova, Dinesh Manocha, Rajiv Jain
  • Publication number: 20240419921
    Abstract: This disclosure describes one or more implementations of systems, non-transitory computer-readable media, and methods that extract viewpoints from content for syntopical reading using an efficient claim-relation graph construction approach. For example, the disclosed systems utilize sentence transformers with claims from content to embed the claims within a metric space (as claim nodes). Furthermore, in some embodiments, the disclosed systems generate a claim relation graph for the claims by utilizing approximate nearest neighbor searches to determine relational edges between a claim node and the claim node's approximate nearest neighbors. Moreover, in some implementations, the disclosed systems utilize the claim relation graph with an edge weighted graph neural network to determine stance labels during extraction of viewpoints (e.g., stance, aspect, and topic) for the claims. Additionally, in one or more instances, the disclosed systems utilize the extracted viewpoints in content retrieval applications (e.g.
    Type: Application
    Filed: June 16, 2023
    Publication date: December 19, 2024
    Inventors: Joseph Barrow, Jennifer Healey, Franck Dernoncourt, Ani Nenkova, Vlad Morariu, Rajiv Jain, Nedim Lipka
  • Publication number: 20240386621
    Abstract: Techniques and systems for training and/or implementing a text-to-image generation model are provided. A pre-trained multimodal model is leveraged for avoiding slower and more labor-intensive methodologies for training a text-to-image generation model. Accordingly, images without associated text (i.e., bare images) are provided to the pre-trained multimodal model so that it can produce generated text-image pairs. The generated text-image pairs are provided to the text-to-image generation model for training and/or implementing the text-to-image generation model.
    Type: Application
    Filed: May 17, 2023
    Publication date: November 21, 2024
    Applicant: Adobe Inc.
    Inventors: Ruiyi Zhang, Yufan Zhou, Tong Yu, Tong Sun, Rajiv Jain, Jiuxiang Gu, Christopher Alan Tensmeyer
  • Patent number: 12147499
    Abstract: Certain embodiments involve using a machine-learning tool to generate metadata identifying segments and topics for text within a document. For instance, in some embodiments, a text processing system obtains input text and applies a segmentation-and-labeling model to the input text. The segmentation-and-labeling model is trained to generate a predicted segment for the input text using a segmentation network. The segmentation-and-labeling model is also trained to generate a topic for the predicted segment using a pooling network of the model to the predicted segment. The output of the model is usable for generating metadata identifying the predicted segment and the associated topic.
    Type: Grant
    Filed: September 5, 2023
    Date of Patent: November 19, 2024
    Assignee: Adobe Inc.
    Inventors: Rajiv Jain, Varun Manjunatha, Joseph Barrow, Vlad Ion Morariu, Franck Dernoncourt, Sasha Spala, Nicholas Miller
  • Publication number: 20240168625
    Abstract: Techniques are provided for generating a digital image of simulated handwriting using an encoder-decoder neural network trained on images of natural handwriting samples. The simulated handwriting image can be generated based on a style of a handwriting sample and a variable length coded text input. The style represents visually distinctive characteristics of the handwriting sample, such as the shape, size, slope, and spacing of the letters, characters, or other markings in the handwriting sample. The resulting simulated handwriting image can include the text input rendered in the style of the handwriting sample. The distinctive visual appearance of the letters or words in the simulated handwriting image mimics the visual appearance of the letters or words in the handwriting sample image, whether the letters or words in the simulated handwriting image are the same as in the handwriting sample image or different from those in the handwriting sample image.
    Type: Application
    Filed: January 23, 2024
    Publication date: May 23, 2024
    Applicant: Adobe Inc.
    Inventors: Christopher Alan Tensmeyer, Rajiv Jain, Curtis Michael Wigington, Brian Lynn Price, Brian Lafayette Davis
  • Publication number: 20240160791
    Abstract: A method includes populating a template database with templates associated with template identifiers (IDs) identifying the templates. The method also includes generating a data model that references a template within the template database, where the data model includes a template ID referencing the template in the template database, and where the template includes a parameter field. The data model further includes a template parameter to apply to the parameter field and a digital signature for at least the template ID and the template parameter. The method also includes deploying the data model within a distributed ledger.
    Type: Application
    Filed: November 15, 2022
    Publication date: May 16, 2024
    Inventors: Songlin HE, Tong SUN, Rajiv JAIN, Nedim LIPKA, Curtis WIGINGTON, Anindo ROY
  • Publication number: 20240161529
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that generate a digital document hierarchy comprising layers of parent-child element relationships from the visual elements. For example, for a layer of the layers, the disclosed systems determine, from the visual elements, candidate parent visual elements and child visual elements. In addition, for the layer of the layers, the disclosed systems generate, from the feature embeddings utilizing a neural network, element classifications for the candidate parent visual elements and parent-child element link probabilities for the candidate parent visual elements and the child visual elements. Moreover, for the layer, the disclosed systems select parent visual elements from the candidate parent visual elements based on the parent-child element link probabilities. Further, the disclosed systems utilize the digital document hierarchy to generate an interactive digital document from the digital document image.
    Type: Application
    Filed: November 15, 2022
    Publication date: May 16, 2024
    Inventors: Vlad Morariu, Puneet Mathur, Rajiv Jain, Ashutosh Mehra, Jiuxiang Gu, Franck Dernoncourt, Anandhavelu N, Quan Tran, Verena Kaynig-Fittkau, Nedim Lipka, Ani Nenkova
  • Publication number: 20240056309
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media that fill in digital documents using user identity models of client devices. For instance, in one or more embodiments, the disclosed systems receive a digital document comprising a digital fillable field. The disclosed systems further retrieve, for a client device associated with the digital document, a decentralized identity credential comprising a user attribute established under a decentralized identity framework. Using the user attribute of the decentralized identity credential, the disclosed systems modify the digital document by filling in the digital fillable field.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 15, 2024
    Inventors: Songlin He, Tong Sun, Nedim Lipka, Curtis Wigington, Rajiv Jain, Anindo Roy
  • Patent number: 11899927
    Abstract: Techniques are provided for generating a digital image of simulated handwriting using an encoder-decoder neural network trained on images of natural handwriting samples. The simulated handwriting image can be generated based on a style of a handwriting sample and a variable length coded text input. The style represents visually distinctive characteristics of the handwriting sample, such as the shape, size, slope, and spacing of the letters, characters, or other markings in the handwriting sample. The resulting simulated handwriting image can include the text input rendered in the style of the handwriting sample. The distinctive visual appearance of the letters or words in the simulated handwriting image mimics the visual appearance of the letters or words in the handwriting sample image, whether the letters or words in the simulated handwriting image are the same as in the handwriting sample image or different from those in the handwriting sample image.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: February 13, 2024
    Assignee: Adobe Inc.
    Inventors: Christopher Alan Tensmeyer, Rajiv Jain, Curtis Michael Wigington, Brian Lynn Price, Brian Lafayette Davis
  • Patent number: 11893345
    Abstract: Systems and methods for natural language processing are described. One or more embodiments of the present disclosure receive a document comprising a plurality of words organized into a plurality of sentences, the words comprising an event trigger word and an argument candidate word, generate word representation vectors for the words, generate a plurality of document structures including a semantic structure for the document based on the word representation vectors, a syntax structure representing dependency relationships between the words, and a discourse structure representing discourse information of the document based on the plurality of sentences, generate a relationship representation vector based on the document structures, and predict a relationship between the event trigger word and the argument candidate word based on the relationship representation vector.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: February 6, 2024
    Assignee: ADOBE, INC.
    Inventors: Amir Pouran Ben Veyseh, Franck Dernoncourt, Quan Tran, Varun Manjunatha, Lidan Wang, Rajiv Jain, Doo Soon Kim, Walter Chang
  • Patent number: 11886815
    Abstract: One example method involves operations for a processing device that include receiving, by a machine learning model trained to generate a search result, a search query for a text input. The machine learning model is trained by receiving pre-training data that includes multiple documents. Pre-training the machine learning model by generating, using an encoder, feature embeddings for each of the documents included in the pre-training data. The feature embeddings are generated by applying a masking function to visual and textual features in the documents. Training the machine learning model also includes generating, using the feature embeddings, output features for the documents by concatenating the feature embeddings and applying a non-linear mapping to the feature embeddings. Training the machine learning model further includes applying a linear classifier to the output features. Additionally, operations include generating, for display, a search result using the machine learning model based on the input.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: January 30, 2024
    Assignee: ADOBE INC.
    Inventors: Jiuxiang Gu, Vlad Morariu, Varun Manjunatha, Tong Sun, Rajiv Jain, Peizhao Li, Jason Kuen, Handong Zhao
  • Publication number: 20240021023
    Abstract: The application relates generally to systems, apparatus and methods for parking facilities allowing users to be able to seamlessly use the facilities to park their vehicles in a safe and efficient manner. The application also relates to systems and methods for touchless parking. More particularly, the present invention is in the area of allowing parking technology automation while enhancing the safety, convenience and user experience in general.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 18, 2024
    Inventors: Rajiv Jain, Joseph Parker
  • Publication number: 20230409672
    Abstract: Certain embodiments involve using a machine-learning tool to generate metadata identifying segments and topics for text within a document. For instance, in some embodiments, a text processing system obtains input text and applies a segmentation-and-labeling model to the input text. The segmentation-and-labeling model is trained to generate a predicted segment for the input text using a segmentation network. The segmentation-and-labeling model is also trained to generate a topic for the predicted segment using a pooling network of the model to the predicted segment. The output of the model is usable for generating metadata identifying the predicted segment and the associated topic.
    Type: Application
    Filed: September 5, 2023
    Publication date: December 21, 2023
    Inventors: Rajiv Jain, Varun Manjunatha, Joseph Barrow, Vlad Ion Morariu, Franck Dernoncourt, Sasha Spala, Nicholas Miller
  • Patent number: 11816243
    Abstract: Systems, methods, and non-transitory computer-readable media can generate a natural language model that provides user-entity differential privacy. For example, in one or more embodiments, a system samples sensitive data points from a natural language dataset. Using the sampled sensitive data points, the system determines gradient values corresponding to the natural language model. Further, the system generates noise for the natural language model. The system generates parameters for the natural language model using the gradient values and the noise, facilitating simultaneous protection of the users and sensitive entities associated with the natural language dataset. In some implementations, the system generates the natural language model through an iterative process (e.g., by iteratively modifying the parameters).
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: November 14, 2023
    Assignee: Adobe Inc.
    Inventors: Thi Kim Phung Lai, Tong Sun, Rajiv Jain, Nikolaos Barmpalios, Jiuxiang Gu, Franck Dernoncourt
  • Patent number: 11783008
    Abstract: Certain embodiments involve using a machine-learning tool to generate metadata identifying segments and topics for text within a document. For instance, in some embodiments, a text processing system obtains input text and applies a segmentation-and-labeling model to the input text. The segmentation-and-labeling model is trained to generate a predicted segment for the input text using a segmentation network. The segmentation-and-labeling model is also trained to generate a topic for the predicted segment using a pooling network of the model to the predicted segment. The output of the model is usable for generating metadata identifying the predicted segment and the associated topic.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: October 10, 2023
    Assignee: Adobe Inc.
    Inventors: Rajiv Jain, Varun Manjunatha, Joseph Barrow, Vlad Ion Morariu, Franck Dernoncourt, Sasha Spala, Nicholas Miller
  • Patent number: 11709915
    Abstract: The present disclosure relates to systems, non-transitory computer-readable media, and methods for classifying an input image utilizing a classification model conditioned by a generative model and/or self-supervision. For example, the disclosed systems can utilize a generative model to generate a reconstructed image from an input image to be classified. In turn, the disclosed systems can combine the reconstructed image with the input image itself. Using the combination of the input image and the reconstructed image, the disclosed systems utilize a classification model to determine a classification for the input image. Furthermore, the disclosed systems can employ self-supervised learning to cause the classification model to learn discriminative features for better classifying images of both known classes and open-set categories.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: July 25, 2023
    Assignee: Adobe Inc.
    Inventors: Pramuditha Perera, Vlad Morariu, Rajiv Jain, Varun Manjunatha, Curtis Wigington
  • Publication number: 20230059367
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that generate a natural language model that provides user-entity differential privacy. For example, in one or more embodiments, the disclosed systems sample sensitive data points from a natural language dataset. Using the sampled sensitive data points, the disclosed systems determine gradient values corresponding to the natural language model. Further, the disclosed systems generate noise for the natural language model. The disclosed systems generate parameters for the natural language model using the gradient values and the noise, facilitating simultaneous protection of the users and sensitive entities associated with the natural language dataset. In some implementations, the disclosed systems generate the natural language model through an iterative process (e.g., by iteratively modifying the parameters).
    Type: Application
    Filed: August 9, 2021
    Publication date: February 23, 2023
    Inventors: Thi Kim Phung Lai, Tong Sun, Rajiv Jain, Nikolaos Barmpalios, Jiuxiang Gu, Franck Dernoncourt