Patents by Inventor Rajiv Malhotra

Rajiv Malhotra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10692700
    Abstract: A system for laser-induced plasma micromachining of a work-piece includes a dielectric fluid, a dielectric fluid supply device, a laser, a processor, and a memory. The dielectric fluid supply device is arranged to hold a work-piece in the dielectric fluid or to direct the dielectric fluid onto the work-piece. The laser is arranged to emit a pulsed laser-beam. The processor is in electronic communication with the laser. The memory is in electronic communication with the processor. The memory includes programming code for execution by the processor. The programming code is programmed to direct the laser to deliver the pulsed laser-beam into the dielectric fluid to create a plasma generated at a focal point of the pulsed laser-beam in the dielectric fluid to micromachine, using the plasma, the work-piece disposed adjacent to the focal point.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: June 23, 2020
    Assignee: Northwestern University
    Inventors: Kumar Pallav, Rajiv Malhotra, Ishan Saxena, Kornel Ehmann, Jian Cao
  • Publication number: 20160358759
    Abstract: A system for laser-induced plasma micromachining of a work-piece includes a dielectric fluid, a dielectric fluid supply device, a laser, a processor, and a memory. The dielectric fluid supply device is arranged to hold a work-piece in the dielectric fluid or to direct the dielectric fluid onto the work-piece. The laser is arranged to emit a pulsed laser-beam. The processor is in electronic communication with the laser. The memory is in electronic communication with the processor. The memory includes programming code for execution by the processor. The programming code is programmed to direct the laser to deliver the pulsed laser-beam into the dielectric fluid to create a plasma generated at a focal point of the pulsed laser-beam in the dielectric fluid to micromachine, using the plasma, the work-piece disposed adjacent to the focal point.
    Type: Application
    Filed: August 23, 2016
    Publication date: December 8, 2016
    Inventors: Kumar Pallav, Rajiv Malhotra, Ishan Saxena, Kornel Ehmann, Jian Cao
  • Patent number: 9455127
    Abstract: A system for laser-induced plasma micromachining of a work-piece includes a dielectric fluid, a dielectric fluid supply device, a laser, a processor, and a memory. The dielectric fluid supply device is arranged to hold a work-piece in the dielectric fluid or to direct the dielectric fluid onto the work-piece. The laser is arranged to emit a pulsed laser-beam. The processor is in electronic communication with the laser. The memory is in electronic communication with the processor. The memory includes programming code for execution by the processor. The programming code is programmed to direct the laser to deliver the pulsed laser-beam into the dielectric fluid to create a plasma generated at a focal point of the pulsed laser-beam in the dielectric fluid to micromachine, using the plasma, the work-piece disposed adjacent to the focal point.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: September 27, 2016
    Assignee: Northwestern University
    Inventors: Kumar Pallav, Rajiv Malhotra, Ishan Saxena, Kornel Ehmann, Jian Cao
  • Patent number: 9168580
    Abstract: A forming system includes first and second tools, moving assemblies, and a control unit. The moving assemblies move the first tool and the second tool relative to the sheet. The control unit is configured to control movement of the first tool and the second tool by the one or more moving assemblies by moving at least one of the first tool or the second tool in a first deformation direction to deform the sheet, then moving the first and second tools laterally relative to the sheet to a subsequent location while engaging the sheet, then moving at least one of the first tool or the second tool in the first deformation direction or an opposite second deformation direction to deform the sheet, and then continue moving the first and second tools to deform the sheet in order to create a three-dimensional component from the sheet.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: October 27, 2015
    Assignee: Northwestern University
    Inventors: Jian Cao, Rajiv Malhotra
  • Publication number: 20150294840
    Abstract: A system for laser-induced plasma micromachining of a work-piece includes a dielectric fluid, a dielectric fluid supply device, a laser, a processor, and a memory. The dielectric fluid supply device is arranged to hold a work-piece in the dielectric fluid or to direct the dielectric fluid onto the work-piece. The laser is arranged to emit a pulsed laser-beam. The processor is in electronic communication with the laser. The memory is in electronic communication with the processor. The memory includes programming code for execution by the processor. The programming code is programmed to direct the laser to deliver the pulsed laser-beam into the dielectric fluid to create a plasma generated at a focal point of the pulsed laser-beam in the dielectric fluid to micromachine, using the plasma, the work-piece disposed adjacent to the focal point.
    Type: Application
    Filed: April 8, 2015
    Publication date: October 15, 2015
    Inventors: Kumar Pallav, Rajiv Malhotra, Ishan Saxena, Kornel Ehmann, Jian Cao