Patents by Inventor Rajiv Vijayan

Rajiv Vijayan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7042857
    Abstract: Techniques to more efficiently transmit pilot and signaling on the uplink in an OFDM system. With subband multiplexing, M usable subbands in the system are partitioned into Q disjoint groups of subbands. Each subband group may be assigned to a different terminal for uplink pilot transmission. Multiple terminals may transmit simultaneously on their assigned subbands. The transmit power for the pilot may be scaled higher to attain the same total pilot energy even though S instead of M subbands are used for pilot transmission by each terminal. Pilot transmissions from the terminals are received, and a channel estimate is derived for each terminal based on the pilot received on the assigned subbands. The channel estimate comprises a response for additional subbands not included in the assigned group. Subband multiplexing may also be used for uplink signaling transmission.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: May 9, 2006
    Assignee: QUALCOM, Incorporated
    Inventors: Ranganathan Krishnan, Rajiv Vijayan, Tamer Kadous
  • Publication number: 20050256873
    Abstract: System for providing hierarchical services in a data network. A method is provided for inserting content into a content stream for rendering on a device. The method includes obtaining one or more annotation parameters that comprise a content identifier, and determining an insertion point indicator that indicates a location in the content stream. The method also includes retrieving the content based on the content identifier, and inserting the content in the content stream at a location indicated by the insertion point indicator.
    Type: Application
    Filed: April 21, 2005
    Publication date: November 17, 2005
    Inventors: Gordon Walker, George Wiley, Ricardo Lopez, Richard Lane, Rajiv Vijayan
  • Publication number: 20050249181
    Abstract: To allow a receiving entity to derive a longer channel estimate while limiting overhead, a transmitting entity transmits a pilot on different groups of subbands in different time intervals. N subbands in the system are arranged into M non-overlapping groups. Each group includes P=N/M subbands that are uniformly distributed across the N subbands. The transmitting entity transmits the pilot on a different subband group in each time interval, and selects all M subband groups in M time intervals based on a pilot staggering pattern. The receiving entity derives (1) an initial impulse response estimate with P channel taps based on the pilot received on one subband group and (2) two longer impulse response estimates with different lengths used for data detection and time tracking. Each longer impulse response estimate may be derived by filtering initial impulse response estimates for a sufficient number of subband groups using a time-domain filter.
    Type: Application
    Filed: August 25, 2004
    Publication date: November 10, 2005
    Inventors: Rajiv Vijayan, Ashok Mantravadi, Krishna Mukkavilli
  • Publication number: 20050215251
    Abstract: Techniques to more efficiently transmit pilot and signaling on the uplink in an OFDM system. With subband multiplexing, M usable subbands in the system are partitioned into Q disjoint groups of subbands. Each subband group may be assigned to a different terminal for uplink pilot transmission. Multiple terminals may transmit simultaneously on their assigned subbands. The transmit power for the pilot may be scaled higher to attain the same total pilot energy even though S instead of M subbands are used for pilot transmission by each terminal. Pilot transmissions from the terminals are received, and a channel estimate is derived for each terminal based on the pilot received on the assigned subbands. The channel estimate comprises a response for additional subbands not included in the assigned group. Subband multiplexing may also be used for uplink signaling transmission.
    Type: Application
    Filed: May 25, 2005
    Publication date: September 29, 2005
    Inventors: Ranganathan Krishnan, Rajiv Vijayan, Tamer Kadous
  • Patent number: 6928062
    Abstract: Techniques to more efficiently transmit pilot and signaling on the uplink in an OFDM system. With subband multiplexing, M usable subbands in the system are partitioned into Q disjoint groups of subbands. Each subband group may be assigned to a different terminal for uplink pilot transmission. Multiple terminals may transmit simultaneously on their assigned subbands. The transmit power for the pilot may be scaled higher to attain the same total pilot energy even though S instead of M subbands are used for pilot transmission by each terminal. Pilot transmissions from the terminals are received, and a channel estimate is derived for each terminal based on the pilot received on the assigned subbands. The channel estimate comprises a response for additional subbands not included in the assigned group. Subband multiplexing may also be used for uplink signaling transmission.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: August 9, 2005
    Assignee: Qualcomm, Incorporated
    Inventors: Ranganathan Krishnan, Rajiv Vijayan, Tamer Kadous
  • Publication number: 20050152326
    Abstract: Frequency error estimation and frame synchronization are performed at a receiver in an OFDM system based on a metric that is indicative of detected pilot power. The metric may be defined based on cross-correlation between two received symbols obtained in two OFDM symbol periods. For frequency error estimation, a metric value is computed for each of multiple hypothesized frequency errors. The hypothesized frequency error for the metric value with the largest magnitude is provided as the estimated frequency error. For frame synchronization, a correlation value is obtained for each OFDM symbol period by correlating metric values obtained for NC (e.g., most recent) OFDM symbol periods with NC expected values. The expected values are computed in a manner consistent with the manner in which the metric values are computed. Peak detection is performed on the correlation values obtained for different OFDM symbol periods to determine frame synchronization.
    Type: Application
    Filed: January 8, 2004
    Publication date: July 14, 2005
    Inventors: Rajiv Vijayan, Alok Gupta, Raghuraman Krishnamoorthi
  • Publication number: 20050141475
    Abstract: Techniques for transmitting overhead information to facilitate efficient reception of individual data streams are described. A base station may transmit multiple data streams on multiple data channels (or MLCs). The MLCs may be transmitted at different times and on different frequency subbands. The time-frequency location of each MLC may change over time. The overhead information indicates the time-frequency location of each MLC and may be sent as “composite” and “embedded” overhead information. The composite overhead information indicates the time-frequency locations of all MLCs and is sent periodically in each super-frame. A wireless device receives the composite overhead information, determines the time-frequency location of each MLC of interest, and receives each MLC at the indicated time-frequency location.
    Type: Application
    Filed: October 18, 2004
    Publication date: June 30, 2005
    Inventors: Rajiv Vijayan, Gordon Walker, Bruce Collins, Dhinakar Radhakrishnan, Ramaswamy Murali
  • Publication number: 20050135308
    Abstract: Techniques for multiplexing multiple data streams using frequency division multiplexing (FDM) in an OFDM system are described. M disjoint “interlaces” are formed with U usable subbands. Each interlace is a different set of S subbands, where U=M·S. The subbands for each interlace are interlaced with the subbands for each of the other M?1 interlaces. M slots may be defined for each symbol period and assigned slot indices 1 through M. The slot indices may be mapped to interlaces such that (1) frequency diversity is achieved for each slot index and (2) the interlaces used for pilot transmission have varying distances to the interlaces used for each slot index, which improves channel estimation performance. Each data stream may be processed as data packets of a fixed size, and different numbers of slots may be used for each data packet depending on the coding and modulation scheme used for the data packet.
    Type: Application
    Filed: October 18, 2004
    Publication date: June 23, 2005
    Inventors: Rajiv Vijayan, Gordon Walker, Raghu Krishnamoorthi, Ramaswamy Murali
  • Publication number: 20050122928
    Abstract: To broadcast different types of transmission having different tiers of coverage in a wireless broadcast network, each base station processes data for a wide-area transmission in accordance with a first mode (or coding and modulation scheme) to generate data symbols for the wide-area transmission and processes data for a local transmission in accordance with a second mode to generate data symbols for the local transmission. The first and second modes are selected based on the desired coverage for wide-area and local transmissions, respectively. The base station also generates pilots and overhead information for local and wide-area transmissions. The data, pilots, and overhead information for local and wide-area transmissions are multiplexed onto their transmission spans, which may be different sets of frequency subbands, different time segments, or different groups of subbands in different time segments. More than two different types of transmission may also be multiplexed and broadcast.
    Type: Application
    Filed: October 18, 2004
    Publication date: June 9, 2005
    Inventors: Rajiv Vijayan, Fuyun Ling, Gordon Walker, Ramaswamy Murali, Ashok Mantravadi, Anand Subramaniam, Krishnamurthy Viswanathan
  • Publication number: 20050101319
    Abstract: Techniques to seamlessly switch reception between multimedia programs are described. For “continued decoding”, a wireless device continues to receive, decode, decompress, and (optionally) display a current program, even after a new program has been selected, until overhead information needed to decode the new program is received. After receiving the overhead information, the wireless device decodes the new program but continues to decompress the current program. The wireless device decompresses the new program after decoding this program. For “early decoding”, the wireless device receives a user input and identifies a program with potential for user selection. The identified program may be the one highlighted by the user input or a program anticipated to be selected based on the user input. The wireless device initiates decoding of the identified program, prior to its selection, so that the program can be decompressed and displayed earlier if it is subsequently selected.
    Type: Application
    Filed: October 18, 2004
    Publication date: May 12, 2005
    Inventors: Ramaswamy Murali, Gordon Walker, Rajiv Vijayan
  • Patent number: 6873606
    Abstract: A rate adaptive transmission scheme for MIMO systems, which can transmit a variable number of data symbol streams, provide transmit diversity for each data symbol stream, and fully utilize the total transmit power of the system and the full power of each antenna. In one method, at least one data symbol stream is received for transmission from a plurality of antennas. Each data symbol stream is scaled with a respective weight corresponding to the amount of transmit power allocated to that stream. The scaled data symbol stream(s) are multiplied with a transmit basis matrix to provide a plurality of transmit symbol streams for the plurality of antennas. The transmit basis matrix (e.g., a Walsh-Hadamard matrix or a DFT matrix) is defined such that each data symbol stream is transmitted from all antennas and each transmit symbol stream is transmitted at (or near) the full power for the associated antenna.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: March 29, 2005
    Assignee: QUALCOMM, Incorporated
    Inventors: Avneesh Agrawal, Rajiv Vijayan, Tamer Kadous
  • Publication number: 20050063298
    Abstract: In an OFDM system, a transmitter broadcasts a first TDM pilot on a first set of subbands followed by a second TDM pilot on a second set of subbands in each frame. The subbands in each set are selected from among N total subbands such that (1) an OFDM symbol for the first TDM pilot contains at least S1 identical pilot-1 sequences of length L1 and (2) an OFDM symbol for the second TDM pilot contains at least S2 identical pilot-2 sequences of length L2, where L2>L1, S1·L1=N, and S2·L2=N. The transmitter may also broadcast an FDM pilot. A receiver processes the first TDM pilot to obtain frame timing (e.g., by performing correlation between different pilot-1 sequences) and further processes the second TDM pilot to obtain symbol timing (e.g., by detecting for the start of a channel impulse response estimate derived from the second TDM pilot).
    Type: Application
    Filed: August 31, 2004
    Publication date: March 24, 2005
    Inventors: Fuyun Ling, Alok Gupta, Raghuraman Krishnamoorthi, Ramaswamy Murali, Rajiv Vijayan, Bojan Vrcelj
  • Publication number: 20050058089
    Abstract: Techniques for multiplexing and transmitting multiple data streams are described. Transmission of the multiple data streams occurs in “super-frames”. Each super-frame has a predetermined time duration and is further divided into multiple (e.g., four) frames. Each data block for each data stream is outer encoded to generate a corresponding code block. Each code block is partitioned into multiple subblocks, and each data packet in each code block is inner encoded and modulated to generate modulation symbols for the packet. The multiple subblocks for each code block are transmitted in the multiple frames of the same super-frame, one subblock per frame. Each data stream is allocated a number of transmission units in each super-frame and is assigned specific transmission units to achieve efficient packing. A wireless device can select and receive individual data streams.
    Type: Application
    Filed: September 1, 2004
    Publication date: March 17, 2005
    Inventors: Rajiv Vijayan, Aamod Khandekar, Fuyun Ling, Gordon Walker, Ramaswamy Murali
  • Publication number: 20050013239
    Abstract: A rate adaptive transmission scheme for MIMO systems, which can transmit a variable number of data symbol streams, provide transmit diversity for each data symbol stream, and fully utilize the total transmit power of the system and the full power of each antenna. In one method, at least one data symbol stream is received for transmission from a plurality of antennas. Each data symbol stream is scaled with a respective weight corresponding to the amount of transmit power allocated to that stream. The scaled data symbol stream(s) are multiplied with a transmit basis matrix to provide a plurality of transmit symbol streams for the plurality of antennas. The transmit basis matrix (e.g., a Walsh-Hadamard matrix or a DFT matrix) is defined such that each data symbol stream is transmitted from all antennas and each transmit symbol stream is transmitted at (or near) the full power for the associated antenna.
    Type: Application
    Filed: August 16, 2004
    Publication date: January 20, 2005
    Inventors: Avneesh Agrawal, Rajiv Vijayan, Tamer Kadous
  • Publication number: 20040165683
    Abstract: An improved channel estimation is disclosed. In one embodiment, initial channel estimation is performed using known training data sequence. The data packet received is demodulated based on the initial channel estimates, de-interleaved and decoded. The decoded data is then is re-encoded, interleaved and modulated to generate additional training symbols for updating the channel estimates throughout the received data packet.
    Type: Application
    Filed: August 28, 2003
    Publication date: August 26, 2004
    Inventors: Alok Kumar Gupta, Rajiv Vijayan
  • Publication number: 20040162097
    Abstract: Techniques for managing peak-to-average power ratio (PAPR) for multi-carrier modulation in wireless communication systems. Different terminals in a multiple-access system may have different required transmit powers. The number of carriers to allocate to each terminal is made dependent on its required transmit power. Terminals with higher required transmit powers may be allocated fewer carriers (associated with smaller PAPR) to allow the power amplifier to operate at higher power levels. Terminals with lower required transmit powers may be allocated more carriers (associated with higher PAPR) since the power amplifier is operated at lower power levels. The specific carriers to assign to the terminals may also be determined by their transmit power levels to reduce out-of-band emissions. Terminals with higher required transmit powers may be assigned with carriers near the middle of the operating band, and terminals with lower required transmit powers may be assigned with carriers near the band edges.
    Type: Application
    Filed: February 18, 2003
    Publication date: August 19, 2004
    Inventors: Rajiv Vijayan, Avneesh Agrawal, Sanjay Jha
  • Patent number: 6757520
    Abstract: Methods and apparatus for selecting a serving sector in a high rate data (HDR) communication system are disclosed. An exemplary HDR communication system defines a set of data rates, at which a sector of an Access Point may send data packets to an Access Terminal. The sector is selected by the Access Terminal to achieve the highest data throughput while maintaining a targeted packet error rate. The Access Terminal employs various methods to evaluate quality metrics of forward and reverse links from and to different sectors, and uses the quality metrics to select the sector to send data packets to the Access Terminal.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: June 29, 2004
    Assignee: Qualcomm Incorporated
    Inventors: Rashid A. Attar, Rajiv Vijayan, Roberto Padovani, Nagabhushana T. Sindhushayana, Qiang Wu, Peter J. Black, Eduardo A. S. Esteves
  • Publication number: 20040121730
    Abstract: A “power adaptive circular” (PAC) transmission scheme that can support both spatial multiplexing and transmit diversity for multi-carrier MIMO systems and has a number of desirable characteristics, including the ability to: transmit a variable number of symbol streams, provide transmit diversity for each transmitted symbol stream, support coded interference estimation technique at a receiver, and use power efficiently. In one method, at least one stream of symbols is received for transmission on a plurality of subbands and from a plurality of antennas. The at least one stream of symbols is multiplexed such that (1) the symbols in each stream are transmitted from the plurality of antennas (e.g., diagonally across the subbands and antennas) and (2) the at least one stream starts in the same subband. A stream of multiplexed symbols is formed for each antenna and further processed, and may be transmitted at full power available for the antenna.
    Type: Application
    Filed: December 8, 2003
    Publication date: June 24, 2004
    Inventors: Tamer Kadous, Avneesh Agrawal, Rajiv Vijayan
  • Publication number: 20040095908
    Abstract: In a disclosed embodiment, signal levels of the active sectors of an access terminal are compared with the signal level of the current serving sector of the access terminal. Next, a delta credit is accumulated. If a DRC lock bit is available, then an accumulated total credit is authorized to produce an authorized accumulated total credit. Afterwards, a new serving sector is identified from a pool of candidate sectors based on the signal levels of the active sectors and the authorized accumulated total credits.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 20, 2004
    Inventors: Qiang Wu, Nagabhushana Sindhushayana, Peter J. Black, Rajiv Vijayan, Rashid Attar
  • Publication number: 20040087276
    Abstract: Methods and apparatus for selecting a serving sector in a high rate data (HDR) communication system are disclosed. An exemplary HDR communication system defines a set of data rates, at which a sector of an Access Point may send data packets to an Access Terminal. The sector is selected by the Access Terminal to achieve the highest data throughput while maintaining a targeted packet error rate. The Access Terminal employs various methods to evaluate quality metrics of forward and reverse links from and to different sectors, and uses the quality metrics to select the sector to send data packets to the Access Terminal.
    Type: Application
    Filed: December 5, 2003
    Publication date: May 6, 2004
    Inventors: Rashid A. Attar, Rajiv Vijayan, Roberto Padovani, Nagabhushana T. Sindhushayana, Qiang Wu, Peter J. Black, Eduardo A.S. Esteves