Patents by Inventor Rajkishore Barik

Rajkishore Barik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190243764
    Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 8, 2019
    Applicant: Intel Corporation
    Inventors: Chandrasekaran Sakthivel, Prasoonkumar Surti, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Abhishek R. Appu, Nicolas C. Galoppo Von Borries, Joydeep Ray, Narayan Srinivasa, Feng Chen, Ben J. Ashbaugh, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Eriko Nurvitadhi, Balaji Vembu, Altug Koker
  • Patent number: 10353706
    Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute a 32-bit intermediate product of 16-bit operands and to compute a 32-bit sum based on the 32-bit intermediate product.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: July 16, 2019
    Assignee: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Patent number: 10346944
    Abstract: An apparatus to facilitate processing of a sparse matrix is disclosed. The apparatus includes a plurality of processing units each comprising one or more processing elements, including logic to read operands, a multiplication unit to multiply two or more operands and a scheduler to identify operands having a zero value and prevent scheduling of the operands having the zero value at the multiplication unit.
    Type: Grant
    Filed: April 9, 2017
    Date of Patent: July 9, 2019
    Assignee: INTEL CORPORATION
    Inventors: Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Nicolas C. Galoppo Von Borries
  • Publication number: 20190139182
    Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex machine learning compute operation.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 9, 2019
    Applicant: Intel Corporation
    Inventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
  • Patent number: 10261903
    Abstract: In an example, an apparatus comprises a plurality of processing unit cores, a plurality of cache memory modules associated with the plurality of processing unit cores, and a machine learning model communicatively coupled to the plurality of processing unit cores, wherein the plurality of cache memory modules share cache coherency data with the machine learning model. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: April 16, 2019
    Assignee: INTEL CORPORATION
    Inventors: Chandrasekaran Sakthivel, Prasoonkumar Surti, John C. Weast, Sara S. Baghsorkhi, Justin E. Gottschlich, Abhishek R. Appu, Nicolas C. Galoppo Von Borries, Joydeep Ray, Narayan Srinivasa, Feng Chen, Ben J. Ashbaugh, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Eriko Nurvitadhi, Balaji Vembu, Altug Koker
  • Patent number: 10255122
    Abstract: Generally, this disclosure provides systems, devices, methods and computer readable media for implementing function callback requests between a first processor (e.g., a GPU) and a second processor (e.g., a CPU). The system may include a shared virtual memory (SVM) coupled to the first and second processors, the SVM configured to store at least one double-ended queue (Deque). An execution unit (EU) of the first processor may be associated with a first of the Deques and configured to push the callback requests to that first Deque. A request handler thread executing on the second processor may be configured to: pop one of the callback requests from the first Deque; execute a function specified by the popped callback request; and generate a completion signal to the EU in response to completion of the function.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: April 9, 2019
    Assignee: Intel Corporation
    Inventors: Brian T. Lewis, Rajkishore Barik, Tatiana Shpeisman
  • Publication number: 20190080429
    Abstract: Generally, this disclosure provides systems, devices, methods and computer readable media for adaptive scheduling of task assignment among heterogeneous processor cores. The system may include any number of CPUs, a graphics processing unit (GPU) and memory configured to store a pool of work items to be shared by the CPUs and GPU. The system may also include a GPU proxy profiling module associated with one of the CPUs to profile execution of a first portion of the work items on the GPU. The system may further include profiling modules, each associated with one of the CPUs, to profile execution of a second portion of the work items on each of the CPUs. The measured profiling information from the CPU profiling modules and the GPU proxy profiling module is used to calculate a distribution ratio for execution of a remaining portion of the work items between the CPUs and the GPU.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 14, 2019
    Applicant: Intel Corporation
    Inventors: Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis, Rashid Kaleem
  • Patent number: 10186011
    Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex machine learning compute operation.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: January 22, 2019
    Assignee: Intel Corporation
    Inventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
  • Patent number: 10186007
    Abstract: An example system for adaptive scheduling of task assignment among heterogeneous processor cores may include any number of CPUs, a graphics processing unit (GPU) and memory configured to store a pool of work items to be shared by the CPUs and GPU. The system may also include a GPU proxy profiling module associated with one of the CPU s to profile execution of a first portion of the work items on the GPU. The system may further include profiling modules, each associated with one of the CPUs, to profile execution of a second portion of the work items on each of the CPUs. The measured profiling information from the CPU profiling modules and the GPU proxy profiling module is used to calculate a distribution ratio for execution of a remaining portion of the work items between the CPUs and the GPU.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: January 22, 2019
    Assignee: Intel Corporation
    Inventors: Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis, Rashid Kaleem
  • Publication number: 20180314936
    Abstract: A mechanism is described for facilitating smart distribution of resources for deep learning autonomous machines. A method of embodiments, as described herein, includes detecting one or more sets of data from one or more sources over one or more networks, and introducing a library to a neural network application to determine optimal point at which to apply frequency scaling without degrading performance of the neural network application at a computing device.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 1, 2018
    Applicant: Intel Corporation
    Inventors: Rajkishore Barik, Brian T. Lewis, Murali Sundaresan, Jeffrey Jackson, Feng Chen, Xiaoming Chen, Mike Macpherson
  • Publication number: 20180315158
    Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the compute apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to cause the compute apparatus to perform a complex machine learning compute operation.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 1, 2018
    Applicant: Intel Corporation
    Inventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
  • Publication number: 20180314935
    Abstract: A mechanism is described for facilitating efficient training of neural networks at computing devices. A method of embodiments, as described herein, includes detecting one or more inputs for training of a neural network, and introducing randomness in floating point (FP) numbers to prevent overtraining of the neural network, where introducing randomness includes replacing less-significant low-order bits of operand and result values with new low-order bits during the training of the neural network.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 1, 2018
    Applicant: Intel Corporation
    Inventors: Brian T. Lewis, Rajkishore Barik, Murali Sundaresan, Leonard Truong
  • Publication number: 20180315398
    Abstract: One embodiment provides for a machine-learning hardware accelerator comprising a compute unit having an adder and a multiplier that are shared between integer data path and a floating-point datapath, the upper bits of input operands to the multiplier to be gated during floating-point operation.
    Type: Application
    Filed: October 18, 2017
    Publication date: November 1, 2018
    Applicant: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Publication number: 20180315399
    Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute a 32-bit intermediate product of 16-bit operands and to compute a 32-bit sum based on the 32-bit intermediate product.
    Type: Application
    Filed: November 21, 2017
    Publication date: November 1, 2018
    Applicant: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Publication number: 20180314250
    Abstract: A mechanism is described for facilitating smart collection of data and smart management of autonomous machines. A method of embodiments, as described herein, includes detecting one or more sets of data from one or more sources over one or more networks, and combining a first computation directed to be performed locally at a local computing device with a second computation directed to be performed remotely at a remote computing device in communication with the local computing device over the one or more networks, where the first computation consumes low power, wherein the second computation consumes high power.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 1, 2018
    Applicant: Intel Corporation
    Inventors: Brian T. Lewis, Feng Chen, Jeffrey R. Jackson, Justin E. Gottschlich, Rajkishore Barik, Xiaoming Chen, Prasoonkumar Surti, Mike B. Macpherson, Murali Sundaresan
  • Publication number: 20180307980
    Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the apparatus comprising a decode unit to decode a single instruction into a decoded instruction, the decoded instruction to perform one or more machine learning operations, wherein the decode unit, based on parameters of the one or more machine learning operations, is to request a scheduler to schedule the one or more machine learning operations to one of an array of programmable compute units and a fixed function compute unit.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Applicant: Intel Corporation
    Inventors: Rajkishore Barik, Elmoustapha Ould-Ahmed-Vall, Xiaoming Chen, Dhawal Srivastava, Anbang Yao, Kevin Nealis, Eriko Nurvitadhi, Sara S. Baghsorkhi, Balaji Vembu, Tatiana Shpeisman, Ping T. Tang
  • Publication number: 20180307950
    Abstract: One embodiment provides for a compute apparatus to perform machine learning operations, the apparatus comprising a decode unit to decode a single instruction into a decoded instruction that specifies multiple operands including an input value and a quantized weight value associated with a neural network and an arithmetic logic unit including a barrel shifter, an adder, and an accumulator register, wherein to execute the decoded instruction, the barrel shifter is to shift the input value by the quantized weight value to generate a shifted input value and the adder is to add the shifted input value to a value stored in the accumulator register and update the value stored in the accumulator register.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Applicant: Intel Corporation
    Inventors: Kevin Nealis, Anbang Yao, Xiaoming Chen, Elmoustapha Ould-Ahmed-Vall, Sara S. Baghsorkhi, Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha
  • Publication number: 20180308206
    Abstract: An apparatus to facilitate compute optimization is disclosed. The apparatus includes a memory device including a first integrated circuit (IC) including a plurality of memory channels and a second IC including a plurality of processing units, each coupled to a memory channel in the plurality of memory channels.
    Type: Application
    Filed: September 7, 2017
    Publication date: October 25, 2018
    Inventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
  • Publication number: 20180307971
    Abstract: In an example, an apparatus comprises a compute engine comprising a high precision component and a low precision component; and logic, at least partially including hardware logic, to receive instructions in the compute engine; select at least one of the high precision component or the low precision component to execute the instructions; and apply a gate to at least one of the high precision component or the low precision component to execute the instructions. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Applicant: Intel Corpoartion
    Inventors: Kamal Sinha, Balaji Vembu, Eriko Nurvitadhi, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Farshad Akhbari, Narayan Srinivasa, Feng Chen, Dukhwan Kim, Nadathur Rajagopalan Satish, John C. Weast, Mike B. MacPherson, Linda L. Hurd, Vasanth Ranganathan, Sanjeev S. Jahagirdar
  • Publication number: 20180308200
    Abstract: An apparatus to facilitate compute optimization is disclosed.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Inventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu