Patents by Inventor Rajkishore Barik

Rajkishore Barik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12367382
    Abstract: A mechanism is described for facilitating efficient training of neural networks at computing devices. A method of embodiments, as described herein, includes detecting one or more inputs for training of a neural network, and introducing randomness in floating point (FP) numbers to prevent overtraining of the neural network, where introducing randomness includes replacing less-significant low-order bits of operand and result values with new low-order bits during the training of the neural network.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: July 22, 2025
    Assignee: INTEL CORPORATION
    Inventors: Brian T. Lewis, Rajkishore Barik, Murali Sundaresan, Leonard Truong, Feng Chen, Xiaoming Chen, Mike B. Macpherson
  • Patent number: 12346798
    Abstract: In an example, an apparatus comprises a compute engine comprising a high precision component and a low precision component; and logic, at least partially including hardware logic, to receive instructions in the compute engine; select at least one of the high precision component or the low precision component to execute the instructions; and apply a gate to at least one of the high precision component or the low precision component to execute the instructions. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: July 12, 2023
    Date of Patent: July 1, 2025
    Assignee: INTEL CORPORATION
    Inventors: Kamal Sinha, Balaji Vembu, Eriko Nurvitadhi, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Anbang Yao, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Farshad Akhbari, Narayan Srinivasa, Feng Chen, Dukhwan Kim, Nadathur Rajagopalan Satish, John C. Weast, Mike B. MacPherson, Linda L. Hurd, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Publication number: 20250117873
    Abstract: Techniques to improve performance of matrix multiply operations are described in which a compute kernel can specify one or more element-wise operations to perform on output of the compute kernel before the output is transferred to higher levels of a processor memory hierarchy.
    Type: Application
    Filed: October 4, 2024
    Publication date: April 10, 2025
    Applicant: Intel Corporation
    Inventors: Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Nicolas C. Galoppo Von Borries
  • Publication number: 20250094170
    Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute a 32-bit intermediate product of 16-bit operands and to compute a 32-bit sum based on the 32-bit intermediate product.
    Type: Application
    Filed: September 30, 2024
    Publication date: March 20, 2025
    Applicant: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Publication number: 20250061534
    Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.
    Type: Application
    Filed: August 29, 2024
    Publication date: February 20, 2025
    Applicant: Intel Corporation
    Inventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
  • Patent number: 12217053
    Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute an intermediate product of 16-bit operands and to compute a 32-bit sum based on the intermediate product.
    Type: Grant
    Filed: December 4, 2023
    Date of Patent: February 4, 2025
    Assignee: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Patent number: 12210900
    Abstract: A mechanism is described for facilitating intelligent thread scheduling at autonomous machines. A method of embodiments, as described herein, includes detecting dependency information relating to a plurality of threads corresponding to a plurality of workloads associated with tasks relating to a processor including a graphics processor. The method may further include generating a tree of thread groups based on the dependency information, where each thread group includes multiple threads, and scheduling one or more of the thread groups associated a similar dependency to avoid dependency conflicts.
    Type: Grant
    Filed: May 17, 2022
    Date of Patent: January 28, 2025
    Assignee: INTEL CORPORATION
    Inventors: Joydeep Ray, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Rajkishore Barik, Eriko Nurvitadhi, Nicolas Galoppo Von Borries, Tsung-Han Lin, Sanjeev Jahagirdar, Vasanth Ranganathan
  • Patent number: 12198221
    Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.
    Type: Grant
    Filed: February 8, 2024
    Date of Patent: January 14, 2025
    Assignee: Intel Corporation
    Inventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
  • Publication number: 20250004861
    Abstract: Disclosed examples include scheduler circuitry to allocate a first task to a first work queue in memory; and a first processor circuit of a first type, the first processor circuit to cause movement of the first task from the first work queue to a second work queue in the memory, the second work queue accessible by a second processor circuit of a second type, the movement atomically performed via a read operation and a write operation to update the second work queue in a same bus cycle to prevent multiple entities from moving the first task in the same bus cycle.
    Type: Application
    Filed: September 12, 2024
    Publication date: January 2, 2025
    Applicant: Intel Corporation
    Inventors: Rajkishore Barik, Stephan A. Herhut, Jaswanth Sreeram, Tatiana Shpeisman, Richard L. Hudson
  • Patent number: 12147849
    Abstract: Methods, apparatus, systems, and articles of manufacture are disclosed to steal work in heterogeneous computing systems. An apparatus includes load balancing circuitry to obtain tasks from a workload by encoding minimum and maximum index ranges of a data parallel operation, allocate a first task from the workload to a first work queue based on a first capability of first computation circuitry, the first computation circuitry to process the first task in the first work queue, and allocate a second task from the workload to a second work queue, second computation circuitry to process the second task in the second work queue. The apparatus further includes first work stealer logic to steal the second task from the second work queue using an atomic operation to access the second work queue.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: November 19, 2024
    Assignee: Intel Corporation
    Inventors: Rajkishore Barik, Stephan A. Herhut, Jaswanth Sreeram, Tatiana Shpeisman, Richard L. Hudson
  • Patent number: 12141891
    Abstract: Techniques to improve performance of matrix multiply operations are described in which a compute kernel can specify one or more element-wise operations to perform on output of the compute kernel before the output is transferred to higher levels of a processor memory hierarchy.
    Type: Grant
    Filed: September 14, 2023
    Date of Patent: November 12, 2024
    Assignee: Intel Corporation
    Inventors: Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Nicolas C. Galoppo Von Borries
  • Patent number: 12141578
    Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute a 32-bit intermediate product of 16-bit operands and to compute a 32-bit sum based on the 32-bit intermediate product.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: November 12, 2024
    Assignee: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Publication number: 20240354559
    Abstract: A mechanism is described for facilitating smart distribution of resources for deep learning autonomous machines. A method of embodiments, as described herein, includes detecting one or more sets of data from one or more sources over one or more networks, and introducing a library to a neural network application to determine optimal point at which to apply frequency scaling without degrading performance of the neural network application at a computing device.
    Type: Application
    Filed: April 25, 2024
    Publication date: October 24, 2024
    Applicant: Intel Corporation
    Inventors: Rajkishore Barik, Brian T. Lewis, Murali Sundaresan, Jeffrey Jackson, Feng Chen, Xiaoming Chen, Mike Macpherson
  • Patent number: 12112397
    Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.
    Type: Grant
    Filed: June 14, 2023
    Date of Patent: October 8, 2024
    Assignee: Intel Corporation
    Inventors: Eriko Nurvitadhi, Balaji Vembu, Nicolas C. Galoppo Von Borries, Rajkishore Barik, Tsung-Han Lin, Kamal Sinha, Nadathur Rajagopalan Satish, Jeremy Bottleson, Farshad Akhbari, Altug Koker, Narayan Srinivasa, Dukhwan Kim, Sara S. Baghsorkhi, Justin E. Gottschlich, Feng Chen, Elmoustapha Ould-Ahmed-Vall, Kevin Nealis, Xiaoming Chen, Anbang Yao
  • Publication number: 20240257294
    Abstract: Embodiments provide mechanisms to facilitate compute operations for deep neural networks. One embodiment comprises a graphics processing unit comprising one or more multiprocessors, at least one of the one or more multiprocessors including a register file to store a plurality of different types of operands and a plurality of processing cores. The plurality of processing cores includes a first set of processing cores of a first type and a second set of processing cores of a second type. The first set of processing cores are associated with a first memory channel and the second set of processing cores are associated with a second memory channel.
    Type: Application
    Filed: February 8, 2024
    Publication date: August 1, 2024
    Applicant: Intel Corporation
    Inventors: Prasoonkumar Surti, Narayan Srinivasa, Feng Chen, Joydeep Ray, Ben J. Ashbaugh, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Sara S. Baghsorkhi, Justin E. Gottschlich, Altug Koker, Nadathur Rajagopalan Satish, Farshad Akhbari, Dukhwan Kim, Wenyin Fu, Travis T. Schluessler, Josh B. Mastronarde, Linda L. Hurd, John H. Feit, Jeffery S. Boles, Adam T. Lake, Karthik Vaidyanathan, Devan Burke, Subramaniam Maiyuran, Abhishek R. Appu
  • Patent number: 12050984
    Abstract: One embodiment provides for a general-purpose graphics processing unit including a scheduler to schedule multiple matrix operations for execution by a general-purpose graphics processing unit. The multiple matrix operations are determined based on a single machine learning compute instruction. The single machine learning compute instruction is a convolution instruction and the multiple matrix operations are associated with a convolution operation.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: July 30, 2024
    Assignee: Intel Corporation
    Inventors: Rajkishore Barik, Elmoustapha Ould-Ahmed-Vall, Xiaoming Chen, Dhawal Srivastava, Anbang Yao, Kevin Nealis, Eriko Nurvitadhi, Sara S. Baghsorkhi, Balaji Vembu, Tatiana Shpeisman, Ping T. Tang
  • Patent number: 12039331
    Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute an intermediate product of 16-bit operands and to compute a 32-bit sum based on the intermediate product.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: July 16, 2024
    Assignee: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Publication number: 20240184572
    Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute an intermediate product of 16-bit operands and to compute a 32-bit sum based on the intermediate product.
    Type: Application
    Filed: December 4, 2023
    Publication date: June 6, 2024
    Applicant: Intel Corporation
    Inventors: Himanshu Kaul, Mark A. Anders, Sanu K. Mathew, Anbang Yao, Joydeep Ray, Ping T. Tang, Michael S. Strickland, Xiaoming Chen, Tatiana Shpeisman, Abhishek R. Appu, Altug Koker, Kamal Sinha, Balaji Vembu, Nicolas C. Galoppo Von Borries, Eriko Nurvitadhi, Rajkishore Barik, Tsung-Han Lin, Vasanth Ranganathan, Sanjeev Jahagirdar
  • Patent number: 12001944
    Abstract: A mechanism is described for facilitating smart distribution of resources for deep learning autonomous machines. A method of embodiments, as described herein, includes detecting one or more sets of data from one or more sources over one or more networks, and introducing a library to a neural network application to determine an optimal point at which to apply frequency scaling without degrading performance of the neural network application at a computing device.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: June 4, 2024
    Assignee: INTEL CORPORATION
    Inventors: Rajkishore Barik, Brian T. Lewis, Murali Sundaresan, Jeffrey Jackson, Feng Chen, Xiaoming Chen, Mike Macpherson
  • Publication number: 20240078629
    Abstract: Techniques to improve performance of matrix multiply operations are described in which a compute kernel can specify one or more element-wise operations to perform on output of the compute kernel before the output is transferred to higher levels of a processor memory hierarchy.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 7, 2024
    Applicant: Intel Corporation
    Inventors: Eriko Nurvitadhi, Balaji Vembu, Tsung-Han Lin, Kamal Sinha, Rajkishore Barik, Nicolas C. Galoppo Von Borries