Patents by Inventor Ralf Abraham

Ralf Abraham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11401476
    Abstract: The invention relates to an aftertreatment arrangement (1.0) for the aftertreatment of at least gases downstream of a fluidized bed gasification process, in particular downstream of an HTW gasifier (1) of a pressure-loaded fluidized bed gasification process, having a particle separation unit (2; 11) which can be arranged downstream of the fluidized bed gasification process and upstream of a gas cooler (3) that can be used for the further aftertreatment of the gases, wherein the aftertreatment arrangement comprises an intermediate cooling unit (12) which can be arranged downstream of the fluidized bed gasification process and upstream of the particle separation unit (11), having a return (B1) for gasification steam (B) that can be coupled to the fluidized bed gasification process. Furthermore, the invention relates to a method for the aftertreatment of at least gases downstream of a fluidized bed gasification process as well as the use of an intermediate cooling unit.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: August 2, 2022
    Assignee: GIDARA ENERGY B.V.
    Inventors: Ralf Abraham, Domenico Pavone, Dobrin Toporov, Herbert Palmowski
  • Publication number: 20210147755
    Abstract: The invention relates to an aftertreatment arrangement (1.0) for the aftertreatment of at least gases downstream of a fluidized bed gasification process, in particular downstream of an HTW gasifier (1) of a pressure-loaded fluidized bed gasification process, having a particle separation unit (2; 11) which can be arranged downstream of the fluidized bed gasification process and upstream of a gas cooler (3) that can be used for the further aftertreatment of the gases, wherein the aftertreatment arrangement comprises an intermediate cooling unit (12) which can be arranged downstream of the fluidized bed gasification process and upstream of the particle separation unit (11), having a return (B1) for gasification steam (B) that can be coupled to the fluidized bed gasification process. Furthermore, the invention relates to a method for the aftertreatment of at least gases downstream of a fluidized bed gasification process as well as the use of an intermediate cooling unit.
    Type: Application
    Filed: June 8, 2018
    Publication date: May 20, 2021
    Inventors: Ralf Abraham, Domenico Pavone, Dobrin Toporov, Herbert Palmowski
  • Patent number: 9890341
    Abstract: A process and device for the gasification of liquid or fine-grain solid fuel materials in a reactor is described. Synthesis gas is generated in a first reaction chamber arranged in the upper part of the reactor; feedstock is fed to the upper part. Liquid slag precipitates on its lateral walls. The lower side has a hole with a slag drop-off edge; generated synthesis gas can be withdrawn in downward direction and the liquid slag can drop off the edge. A second chamber delimited by a water film is located under the opening. A third chamber adjacent to the bottom of the second is fed with water. A water bath is adjacent the bottom of the third chamber. The synthesis gas is withdrawn from the pressure vessel in an area at the side or below the third chamber, but located above the water bath.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: February 13, 2018
    Assignee: Thyssenkrupp Industrial Solutions AG
    Inventors: Johannes Kowoll, Eberhard Kuske, Ralf Abraham, Max Heinritz-Adrian
  • Patent number: 9862900
    Abstract: The invention relates to an oxygen lance that has at least three mutually coaxial pipes, each of which delimits at least one annular gap. The outermost pipe is designed to conduct superheated steam and has a steam supply point, the central pipe is designed as an annular gap, and the innermost pipe is designed to conduct oxygen at a temperature of no higher than 180° C. and has an oxygen supply point. A temperature sensor is arranged within the innermost pipe, said temperature sensor extending to just in front of the opening of the innermost pipe. The innermost pipe tapers in the form of a nozzle before opening; the innermost pipe opens into the central pipe; and the opening of the central pipe protrudes farther relative to the opening of the outermost pipe.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: January 9, 2018
    Assignee: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG
    Inventors: Ralf Abraham, Domenico Pavone, Reinald Schulze Eckel, Dobrin Toporov, Simon Boris Hafner
  • Patent number: 9498746
    Abstract: Using a method and installation for separating acid components, dust and tar from hot gases of gasification installations, an economical method using a corresponding installation is to be created, which enables acid compounds HF, HCl, H2S, dust and tar to be reliably separated in the highest possible temperature range. The aim is achieved in that the media flow leaving the gasification at above 700° C. is fed with additives to a desulfurization process and subsequently to a combined cyclone 9 having associated filter cartridges 17 in a common vessel 8, and the gas is withdrawn for further use downstream of the filter cartridges.
    Type: Grant
    Filed: November 13, 2010
    Date of Patent: November 22, 2016
    Assignee: ThyssenKrupp Uhde GmbH
    Inventors: Domenico Pavone, Ralf Abraham
  • Patent number: 9410480
    Abstract: A synthesis gas (H2+CO) that comes from a gasifier is supposed to be used in more efficient and optimal manner, particularly for generating electricity, whereby then, CO2 that occurs at the same time is supposed to be passed to storage. This is achieved in that—the synthesis gas (H2+CO) and oxygen (O2) from an air separation system are combusted in a burner, and relaxed by way of a gas turbine (driving a generator), —CO2 is separated in the waste gas stream and passed to a compressor driven by the gas turbine, and—passed to CO2 storage as compressed CO2.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: August 9, 2016
    Assignee: ThyssenKrupp Uhde GmbH
    Inventors: Domenico Pavone, Ralf Abraham
  • Publication number: 20160160138
    Abstract: A process and device for the gasification of liquid or fine-grain solid fuel materials in a reactor is described. Synthesis gas is generated in a first reaction chamber arranged in the upper part of the reactor; feedstock is fed to the upper part. Liquid slag precipitates on its lateral walls. The lower side has a hole with a slag drop-off edge; generated synthesis gas can be withdrawn in downward direction and the liquid slag can drop off the edge. A second chamber delimited by a water film is located under the opening. A third chamber adjacent to the bottom of the second is fed with water. A water bath is adjacent the bottom of the third chamber. The synthesis gas is withdrawn from the pressure vessel in an area at the side or below the third chamber, but located above the water bath.
    Type: Application
    Filed: February 16, 2016
    Publication date: June 9, 2016
    Inventors: JOHANNES KOWOLL, EBERHARD KUSKE, RALF ABRAHAM, MAX HEINRITZ-ADRIAN
  • Patent number: 9290709
    Abstract: A process and device for the gasification of liquid or fine-grain solid fuel materials with the aid of oxygenous, gaseous gasification agents in a reactor is described. Liquid slag is separated on the walls of the reactor. The synthesis gas is generated in a first reaction chamber arranged in the upper part of the reactor and the feedstock is fed to the upper part. Liquid slag precipitates on its lateral walls, with free downflow and no solidification of the slag surface. The lower side has a hole with a slag drop-off edge, from which the generated synthesis gas can be withdrawn in downward direction and the liquid slag can drop off the edge. A second chamber which is delimited by a water film is located under the opening and used to keep the synthesis gas dry and cool. A third chamber is adjacent to the bottom of the second and fed with water to cool the synthesis gas.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: March 22, 2016
    Assignee: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG
    Inventors: Johannes Kowoll, Eberhard Kuske, Ralf Abraham, Max Heinritz-Adrian
  • Publication number: 20150322356
    Abstract: A method for heating a high-temperature Winkler gasifier during the start-up of the gasifier includes the use of at least one burner for heating purposes. A gasifier head of the Winkler gasifier is assigned a cyclone with a return conduit for returning the particles separated off in the cyclone into the fluidized bed in the lower region of the gasifier, by means of which method the heating of a high-temperature Winkler gasifier is simplified and made substantially independent of the structural size of the gasifier. The at least one burner, which is installed in the head region of the gasifier and which acts downward into the interior of the gasifier, allows gas flow to be generated in the reverse direction through the return conduit of the cyclone.
    Type: Application
    Filed: November 29, 2013
    Publication date: November 12, 2015
    Applicant: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG
    Inventors: Domenico Pavone, Dobrin Toporov, Ralf Abraham
  • Publication number: 20150232770
    Abstract: The invention relates to an oxygen lance that has at least three mutually coaxial pipes, each of which delimits at least one annular gap. The outermost pipe is designed to conduct superheated steam and has a steam supply point, the central pipe is designed as an annular gap, and the innermost pipe is designed to conduct oxygen at a temperature of no higher than 180° C. and has an oxygen supply point. A temperature sensor is arranged within the innermost pipe, said temperature sensor extending to just in front of the opening of the innermost pipe. The innermost pipe tapers in the form of a nozzle before opening; the innermost pipe opens into the central pipe; and the opening of the central pipe protrudes farther relative to the opening of the outermost pipe.
    Type: Application
    Filed: August 8, 2013
    Publication date: August 20, 2015
    Applicant: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG
    Inventors: Ralf Abraham, Domenico Pavone, Reinald Schulze Eckel, Dobrin Toporov, Simon Boris Hafner
  • Patent number: 8951316
    Abstract: A process for the production, treatment and combustion of synthesis gas for the purpose of generating electric power is disclosed. The synthesis gas is produced from a solid, carbon-containing fuel with the aid of an oxygen-containing gas and treated by a slag-separating device and a device separating alkalis. Subsequently, the synthesis gas produced is fed to an expansion turbine where the pressure energy is used for generating power. On account of the treatment and separation of alkalis the expansion turbine is protected from corrosion and mechanical impact. The expanded synthesis gas is then burnt under pressure and the combustion is used in a combined-cycle process using a gas turbine, steam generator and steam turbine for generating power. The process thus has an increased efficiency. Apparatus for use of the process is also described.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: February 10, 2015
    Assignee: ThyssenKrupp Industrial Solutions AG
    Inventors: Ralf Abraham, Domenico Pavone
  • Publication number: 20150011811
    Abstract: Disclosed is a system and method for cooling and relieving pressure of the bottom product produced by the fluidized-bed gasification of biomass, brown coal, or hard coal having a high ash content. With such a method and system, an economic solution for cooling and pressure expansion of the bottom product produced is to be ensured, which is achieved by the bottom product leaving the fluidized bed at a maximum of 1500° C. and a pressure of up 40 bar, being fed to an intermediate store, then being fed from the intermediate store to a pressure tank having a cooling system, and then being fed to a pressure release system.
    Type: Application
    Filed: February 4, 2013
    Publication date: January 8, 2015
    Applicant: ThyssenKrupp Industrial Solutions AG
    Inventors: Domenico Pavone, Ralf Abraham, Dobrin Toporov
  • Publication number: 20140374661
    Abstract: A method for producing synthesis gas by gasifying a biomass in a fluidized bed is disclosed wherein the biomass is fed to a fluidized bed gasifier. In order to eliminate vapor-forming alkalis produced during the gasification, the method brings the synthesis gas into contact with getter ceramics.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 25, 2014
    Applicant: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG
    Inventors: Max Heinritz-Adrian, Ralf Abraham, Domenico Pavone
  • Patent number: 8894728
    Abstract: In the case of a device for gasification of carbonaceous fuels, having a discharge for slags into a slag bath, a solution is supposed to be created with which the gasifier discharge opening is reliably kept at a temperature that guarantees that the slag will flow out. This is achieved in that the gasifier discharge opening (6) is equipped with a ceramic drip edge (7) that can be electrically heated.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: November 25, 2014
    Assignee: ThyssenKrupp Uhde GmbH
    Inventors: Domenico Pavone, Ralf Abraham, Muhammad Iqbal Mian
  • Patent number: 8512444
    Abstract: With a method and a system for treatment of a hot crude gas generated by an entrained flow gasification system, removal of the compounds that contain sulfur and carbon is supposed to be undertaken in such a manner that hot gas is made available for further use. This is achieved in that a desulfurization (7) follows the gasifier (2), in series, in the flow path of the hot gas, followed by a solid separation (8, 9), whereby behind the solid separation (8, 9), a partial stream (13) of the gas is provided downstream by way of a water quench (14), a Venturi scrubber (15), a crude gas cooler (16), as well as an H2O separation (17) and a compressor (18), the flow path (19) of which is passed back, cooled, into the circuit, behind the gasification (2) and ahead of the desulfurization system.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: August 20, 2013
    Assignee: ThyssenKrupp Uhde GmbH
    Inventors: Ralf Abraham, Michael Rieger, Domenico Pavone, Olaf Von Morstein
  • Publication number: 20130199424
    Abstract: A device and method for producing a fine-grained fuel, in particular from solid, paste-like or aqueous energy feed stocks, by drying and crushing, including an impact reactor having a rotor and impact elements, a labyrinth seal in the region of the rotor shaft of the impact reactor, a device for feeding hot drying gas through the labyrinth seal into the impact reactor and at least one further feed device for hot drying gas in the bottom region of the impact reactor, a feed device for solid or paste-like energy feed stocks in the top region of the impact reactor, at least one extractor device for a gas flow containing crushed and dried energy feedstock particles, and a device for separating and extracting crushed and dried energy feed stock particles from the gas flow extracted from the impact reactor.
    Type: Application
    Filed: January 26, 2011
    Publication date: August 8, 2013
    Applicants: PROACTOR SCHUTZRECHTSVERWALTUNGS GMBH, THYSSENKRUPP UHDE GMBH
    Inventors: Ralf Abraham, Stefan Hamel, Ralf Schäfer
  • Publication number: 20130036622
    Abstract: A fluidized bed reactor for thermally pre-treating solid raw materials containing water using a stepped, stationary fluidized bed, including at least two concentrically arranged treatment zones. Each treatment zone has at least one separate gas inlet for fluidizing gas. Each treatment zone is divided from the respective other adjacent treatment zone by an overflow weir, and the innermost treatment zone has an outlet on the floor for reaction products. The solid raw material is fed into the outermost treatment zone of the fluidized bed. A first temperature and a first residence time are set in a first step, and a second temperature and a second residence time are set in a second. The temperatures of the fluidizing gas of the first and second steps are controlled separately. The fluidized material flows from the outer treatment zone over a weir into the inner treatment zone, and is drawn through the outlet.
    Type: Application
    Filed: March 31, 2011
    Publication date: February 14, 2013
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventors: Ralf Abraham, Stefan Hamel
  • Publication number: 20120298920
    Abstract: With a method for the gasification of a biomass in a fluidized bed, wherein the biomass is first pre-dried and passed to the fluidized bed gasifier, subsequently the raw gas from the gasifier impacts a recirculation cyclone and subsequently at least one raw gas cooler, the yield of such a method of procedure is supposed to be improved and the system costs are supposed to be lowered. This is achieved in that the dusts that occur in the hot gas filter that follows the raw gas cooler are recirculated into the introduction system of the biomass.
    Type: Application
    Filed: December 31, 2010
    Publication date: November 29, 2012
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventors: Domenico Pavone, Ralf Abraham
  • Publication number: 20120266485
    Abstract: An apparatus and method for creating a fine-grained fuel from solid or paste-like raw energy materials by torrefaction. The apparatus including an impact reactor having a rotor and impact elements which is temperature resistant up to 350 degrees Celsius, a feed device for hot circulation gas in the lower region of the impact reactor, a feed device for solid or paste-like raw energy materials in the head region of the impact reactor. The apparatus further including at least one withdrawal device for a gas flow having comminuted and torrefacted raw energy particles and a separation and withdrawal device for crushed and torrefacted raw energy particles from the gas flow taken out of the impact reactor.
    Type: Application
    Filed: November 16, 2010
    Publication date: October 25, 2012
    Applicants: PROACTOR SCHUTZRECHTSVERWALTUNGSGMBH, THYSSENKRUPP UHDE GMBH
    Inventors: Ralf Abraham, Stefan Hamel, Ralf Schaefer
  • Publication number: 20120269708
    Abstract: Using a method and installation for separating acid components, dust and tar from hot gases of gasification installations, an economical method using a corresponding installation is to be created, which enables acid compounds HF, HCl, H2S, dust and tar to be reliably separated in the highest possible temperature range. The aim is achieved in that the media flow leaving the gasification at above 700° C. is fed with additives to a desulfurization process and subsequently to a combined cyclone 9 having associated filter cartridges 17 in a common vessel 8, and the gas is withdrawn for further use downstream of the filter cartridges.
    Type: Application
    Filed: November 13, 2010
    Publication date: October 25, 2012
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventors: Domenico Pavone, Ralf Abraham