Patents by Inventor Ralf Ebersbach

Ralf Ebersbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950846
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. Illumination points are arranged in three rings concentrically around an instrument axis; and the three rings include a first ring, a second ring and a third ring and the illumination points on the first ring and the third ring are rotated in relation to the illumination points on the second ring such that each of the illumination points on the first ring is on a common radial with one of the illumination points on the third ring and each of the illumination points on the second ring is not on the common radial.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: April 9, 2024
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Publication number: 20220400947
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Application
    Filed: June 29, 2022
    Publication date: December 22, 2022
    Inventors: Ralf EBERSBACH, Martin HACKER, Gerard ANTKOWIAK, Peter KLOPFLEISCH, Ferid BAJRAMOVIC, Tobias BÜHREN, Matthias REICH
  • Publication number: 20220244178
    Abstract: The invention relates to a method for controlling a semiconductor-laser-diode-based SS-interferometer system (SS=swept source), which allows for a wide range of application and is suitable for use in ophthalmology, in particular for imaging and for determining biometric measurement values of the eye. In the method according to the invention, by means of periodic current modulation, the operation of single semiconductor laser diodes is designed such that a highly coherent spectral laser line can be adjusted with a highest possible repetition rate and over a wide wavelength range. In addition, the following parameters: centre wavelength, sweep rate, sweep range, optical power in the eye and coherence length are adjusted such that the method is suitable for imaging and biometric applications via whole-eye scans. The proposed semiconductor-laser-diode-based SS-interferometer system is provided, in particular, for biometric measuring of the eye.
    Type: Application
    Filed: February 28, 2020
    Publication date: August 4, 2022
    Applicant: Carl Zeiss Meditec AG
    Inventors: Rainer LEITGEB, Manfred DICK, Roland BERGNER, Ralf EBERSBACH, Thomas PABST
  • Patent number: 11399714
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: August 2, 2022
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Publication number: 20200345228
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Application
    Filed: June 26, 2020
    Publication date: November 5, 2020
    Inventors: Ralf EBERSBACH, Martin HACKER, Gerard ANTKOWIAK, Peter KLOPFLEISCH, Ferid BAJRAMOVIC, Tobias BÜHREN, Matthias REICH
  • Patent number: 10694941
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: June 30, 2020
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Patent number: 10213099
    Abstract: A method for measuring the geometric parameters of the eye. These measurements, known by the term biometrics, are particularly significant for the calculation of intraocular lenses after previous refractive cornea surgery. OCT images and other images are recorded simultaneously, the intensity of the reflected light generated during the OCT image recordings being lower by a factor of 2, by a factor of 10 or by a factor of 100, than the intensity of the illumination light of the other image recordings. The solution provides a method for producing other image recordings, in addition to OCT recordings, in the form of representations of the sclera or of the fundus, or keratometric, topographic or biometric measurements, or even short image sequences, for instance, while aligning the device with the eye.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: February 26, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ferid Bajramovic, Ralf Ebersbach, Stephan Laqua
  • Publication number: 20170296047
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Application
    Filed: May 1, 2017
    Publication date: October 19, 2017
    Inventors: Ralf EBERSBACH, Martin HACKER, Gerard ANTKOWIAK, Peter KLOPFLEISCH, Ferid BAJRAMOVIC, Tobias BÜHREN, Matthias REICH
  • Patent number: 9649027
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: May 16, 2017
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Patent number: 9492077
    Abstract: Optimized device for swept source optical coherence domain reflectometry and tomography. In the coherence-optical device, light, with the aid of an interferometer, is used for distance-measuring and imaging purposes on reflecting and scattering areas of the human eye. The optimized device according to the invention consists of includes a tunable light source, matched to the sought-after measurement region ZOCT, with a resonator length LR, an interferometric measurement arrangement, a data capturing unit for capturing the light portions scattered back from the sample and a data processing unit. Here the resonator length LR of the tunable light source is matched not only to the sought-after measurement region ZOCT, but also to the entire interferometric measurement arrangement such that disturbance points present in the interferometric measurement arrangement cannot create disturbance signals in the sought-after measurement region ZOCT.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: November 15, 2016
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ralf Ebersbach, Martin Hacker
  • Patent number: 9259148
    Abstract: A method for measuring the axial length of an eye using optical coherence tomography, during which a plurality of A-scans of the OCT measurement are combined to an axial length, taking into account the alignment with which they were obtained, and taking into account the topography of the cornea. The distance of the front of the cornea from the retina is determined using OCT while measuring or controlling the alignment of the measuring device to the eye in that the topography of the front of the cornea is measured or made available. The calculation of an axial length from an A-scan of the OCT takes into account a corneal topography registered to the A-scans and is the basis for an intraocular lens calculation. The invention exhibits an increased tolerance range with regard to an imprecise alignment of the measuring device to the eye.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: February 16, 2016
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ferid Bajramovic, Ralf Ebersbach
  • Patent number: 9155462
    Abstract: A short coherence interferometer for measuring several axially spaced-apart regions of a sample, especially of an eye, which has a measuring optical path, through which the measuring radiation falls on the sample, a tunable interferometer for the axial, relative retardation of parts of the radiation, wherein the axial relative retardation is assigned to the axial spacing of the regions and a detector for producing an interference signal from interfering measurement radiation, scattered or reflected back from the sample as sample radiation. The tunable interferometer divides the sample radiation into two parts, which are axially relatively retarded and superimposed so as to interfere. During the superimposition, the tunable interferometer forms individual radiations, which represent quadrature components of the sample radiation, and the detector detects the individual radiations.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: October 13, 2015
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Hacker, Ralf Ebersbach, Thomas Pabst
  • Publication number: 20150257641
    Abstract: A method for measuring the geometric parameters of the eye. These measurements, known by the term biometrics, are particularly significant for the calculation of intraocular lenses after previous refractive cornea surgery. OCT images and other images are recorded simultaneously, the intensity of the reflected light generated during the OCT image recordings being lower by a factor of 2, by a factor of 10 or by a factor of 100, than the intensity of the illumination light of the other image recordings. The solution provides a method for producing other image recordings, in addition to OCT recordings, in the form of representations of the sclera or of the fundus, or keratometric, topographic or biometric measurements, or even short image sequences, for instance, while aligning the device with the eye.
    Type: Application
    Filed: September 27, 2013
    Publication date: September 17, 2015
    Inventors: Ferid Bajramovic, Ralf Ebersbach, Stephan Laqua
  • Publication number: 20150238078
    Abstract: A device for determining biometric variables of the eye, as are incorporated in the calculation of intraocular lenses including a multi-point keratometer and an OCT arrangement. The keratometer measurement points are illuminated telecentrically and detected telecentrically and the OCT arrangement is designed as a laterally scanning swept-source system with a detection region detecting the whole eye over the whole axial length thereof. The multi-point keratometer ensures that a sufficient number of keratometer points are available for measuring the corneal surface. By contrast, telecentricity ensures that the positioning inadequacies of the measuring instrument in relation to the eye to be measured do not lead to a local mismatch of the reflection points. The swept-source OCT scan detects the whole eye over the length thereof so that both anterior chamber structures and retina structures can be detected and a consistent whole eye image can be realized.
    Type: Application
    Filed: September 27, 2013
    Publication date: August 27, 2015
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Ralf Ebersbach, Martin Hacker, Gerard Antkowiak, Peter Klopfleisch, Ferid Bajramovic, Tobias Bühren, Matthias Reich
  • Patent number: 9044164
    Abstract: A device for swept-source optical coherence domain reflectometry (SS OCDR) on moveable samples, particularly human eyes, for obtaining A-scans, having a measuring range according to the sample length and having a laser light source which can be adjusted by a main wave number k0 and at least one receiver for the light dissipated from the sample, wherein the sample is illuminated on the sample surface by a measurement beam having a diameter D by way of a coupling device. The light source has a spectral line width of ?k<168 m?1 and the adjustment of the light source is carried out in ?<44 s/(D*k0).
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 2, 2015
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Hacker, Ralf Ebersbach, Thomas Pabst, Ulf Peterlein, Gerard Antkowiak, Roland Bergner, Ingo Koschmieder
  • Patent number: 8967808
    Abstract: An ophthalmological measuring system, for obtaining biometric data of an eye, provided with the necessary calibration and check devices for monitoring the functionality and the calibration status. The ophthalmological measuring system includes an illumination source for illuminating an eye with light and with a sensor for recording and analyzing back-scattered or reflected light components and a controller. At least one calibration and check system integrated in the ophthalmological measuring system for monitoring the functional and calibration status is provided. A device is also provided which houses the calibration and test structures and which reads off the individual physical data therefrom by an interface. The ophthalmological measuring system is in particular provided for determining biometrical data but can also be used for ophthalmological, dermatological or other devices which require calibration and/or functional checking at regular intervals.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: March 3, 2015
    Assignee: Carl Zeiss Meditec AG
    Inventors: Gerard Antkowiak, Martin Hacker, Ingo Koschmieder, Roland Bergner, Ralf Ebersbach, Thomas Pabst, Eberhard Hofmann, Michael Guentzschel, Steffen Dubnack
  • Patent number: 8950866
    Abstract: A method for reliably determining the axial length of an eye uses optical coherence tomography (OCT), where the eye is aligned with a fixation mark so that the optical axis of the measuring instrument coincides at least approximately with a visual axis of the eye. The axial length is determined from at least one B-scan taken in an initial AS mode (anterior segment mode) and the axial length is also determined from at least one B-scan taken in a second RS mode (retina segment mode). A resultant reliable axial length of the eye is determined using the axial lengths from the AS and RS modes, where available and where possible, or the process is ended without a resultant axial length.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: February 10, 2015
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Volkwardt, Ferid Bajramovic, Ralf Ebersbach
  • Patent number: 8845097
    Abstract: An ophthalmological measuring system for determining distances and/or for tomographic imaging of ocular structures, based on an OCT method. The measuring system includes a light source with a spectral centroid (?), an interferometric measuring device, a scanner system, which in addition to the lateral deflection of the sample beam also has axial modulations with a frequency (f) in the sample arm, and a control and evaluation unit. The scanner performs a lateral, two-dimensional deflection of the sample beam with the aid of one or even two separate mirror elements and can in particular have axial modulation amplitudes zM>>?/2. The system can also be used for scanner systems in other fields that use an OCT method, in particular a swept-source OCT method.
    Type: Grant
    Filed: July 2, 2011
    Date of Patent: September 30, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Hacker, Thomas Pabst, Ralf Ebersbach, Gerard Antkowiak
  • Publication number: 20140268057
    Abstract: A device for swept-source optical coherence domain reflectometry (SS OCDR) on moveable samples, particularly human eyes, for obtaining A-scans, having a measuring range according to the sample length and having a laser light source which can be adjusted by a main wave number k0 and at least one receiver for the light dissipated from the sample, wherein the sample is illuminated on the sample surface by a measurement beam having a diameter D by way of a coupling device. The light source has a spectral line width of ?k<168 m?1 and the adjustment of the light source is carried out in ?<44 s/(D*k0).
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Martin Hacker, Ralf Ebersbach, Thomas Pabst, Ulf Peterlein, Gerard Antkowiak, Roland Bergner, Ingo Koschmieder
  • Patent number: 8736935
    Abstract: An optical deflection unit for targeted radiation, e.g., produced by laser or superluminescent diodes, in scanning, ophthalmological measuring and therapy systems, comprises a deflection mirror, a position sensor and a control unit, which form a control circuit for minimizing the deviation of the actual positions, detected by the position sensor, from the desired positions of the deflection mirror, whereby the optical deflection unit comprises a deflection mirror, oscillatingly movable by means of non-contacting electromagnetic drives around at least one rotation axis, and which is positioned in the direction of the, at least, one rotation axis between at least two bearings. The optical deflection unit is designed may also be used for beam guidance in high and ultrahigh vacuum installations, such as UV and EUV exposure installations for semiconductor lithography.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: May 27, 2014
    Assignee: Carl Zeiss Meditec AG
    Inventors: Gerard Antkowiak, Thomas Pabst, Ralf Ebersbach, Heino Weigand, Martin Hacker