Patents by Inventor Ralf-Peter Brinkmann

Ralf-Peter Brinkmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9113543
    Abstract: The invention relates to a device and method for measuring the density of a plasma by determining an impulse response to a high-frequency signal coupled into a plasma. The density, electron temperature and/or collision frequency as a function of the impulse response can be determined. A probe having a probe head and a probe shaft can be introduced into the plasma, wherein the probe shaft is connected to a signal generator for electrically coupling a high-frequency signal into the probe head. The probe core is enclosed by the jacket and has at its surface mutually insulated electrode areas of opposite polarity. A balun is arranged at the transition between the probe head and an electrically unbalanced high-frequency signal feed to convert electrically unbalanced signals into balanced signals.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: August 18, 2015
    Assignee: RUHR-UNIVERSITÄT BOCHUM
    Inventors: Ralf Peter Brinkmann, Jens Oberrath, Peter Awakowicz, Martin Lapke, Thomas Musch, Thomas Mussenbrock, Ilona Rolfes, Christian Schulz, Robert Storch, Tim Styrnoll, Christian Zietz
  • Patent number: 8933629
    Abstract: A method of establishing a DC bias in front of at least one electrode in a plasma operating apparatus by applying an RF voltage with at least two harmonic frequency components with a controlled relative phase between the components, where at least one of the higher frequency components is established as an even multiple of the lower frequency component.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: January 13, 2015
    Assignee: Ruhr-Universität Bochum
    Inventors: Brian George Heil, Uwe Czarnetzki, Ralf Peter Brinkmann, Thomas Mussenbrock
  • Publication number: 20140103808
    Abstract: A method of establishing a DC bias in front of at least one electrode in a plasma operating apparatus by applying an RF voltage with at least two harmonic frequency components with a controlled relative phase between the components, where at least one of the higher frequency components is established as an even multiple of the lower frequency component.
    Type: Application
    Filed: November 8, 2013
    Publication date: April 17, 2014
    Applicant: Ruhr-Universitat Bochum
    Inventors: Brian George Heil, Uwe Czarnetzki, Ralf Peter Brinkmann, Thomas Mussenbrock
  • Patent number: 8643280
    Abstract: A method of establishing a DC bias in front of at least one electrode in a plasma operating apparatus by applying an RF voltage with at least two harmonic frequency components with a controlled relative phase between the components, where at least one of the higher frequency components is established as an even multiple of the lower frequency component.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: February 4, 2014
    Assignee: Ruhr-Universität Bochum
    Inventors: Brian George Heil, Uwe Czarnetzki, Ralf Peter Brinkmann, Thomas Mussenbrock
  • Publication number: 20130160523
    Abstract: The invention relates to a device and method for measuring the density of a plasma by determining an impulse response to a high-frequency signal coupled into a plasma. The density, electron temperature and/or collision frequency as a function of the impulse response can be determined. A probe having a probe head and a probe shaft can be introduced into the plasma, wherein the probe shaft is connected to a signal generator for electrically coupling a high-frequency signal into the probe head. The probe core is enclosed by the jacket and has at its surface mutually insulated electrode areas of opposite polarity. A balun is arranged at the transition between the probe head and an electrically unbalanced high-frequency signal feed to convert electrically unbalanced signals into balanced signals.
    Type: Application
    Filed: October 6, 2011
    Publication date: June 27, 2013
    Applicant: RUHR-UNIVERSITÄT BOCHUM
    Inventors: Ralf Peter Brinkmann, Jens Oberrath, Peter Awakowicz, Martin Lapke, Thomas Musch, Thomas Mussenbrock, Ilona Rolfes, Christian Schulz, Robert Storch, Tim Styrnoll, Christian Zietz
  • Publication number: 20120097641
    Abstract: Method and device for the plasma treatment of a substrate in a plasma device, wherein—the substrate (110) is arranged between an electrode (112) and a counter-electrode (108) having a distance d between a surface area of the substrate to be treated and the electrode, —a capacitively coupled plasma discharge is excited, forming a DC self-bias between the electrode (112) and the counter-electrode (108), —in an area of the plasma discharge between the surface area to be treated and the electrode having a quasineutral plasma bulk (114), a quantity of at least one activatable gas species, to which a surface area of the substrate to be treated is subjected, is present —it is provided that a plasma discharge is excited, —wherein the distance d has a value comparable to s=se+sg, where se denotes a thickness of a plasma boundary layer (119) in front of the electrode, and sg denotes a thickness of a plasma boundary layer (118) in front of the substrate surface to be treated or —wherein the quasineutral plasma bulk (114
    Type: Application
    Filed: November 4, 2009
    Publication date: April 26, 2012
    Applicants: FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGWANDTEN FORSCHUNG E.V., RUHR-UNIVERSITAT BOCHUM, LEYBOLD OPTICS GMBH
    Inventors: Rudolf Beckmann, Michael Geisler, Arndt Zeuner, Marks Fiedler, Gunter Grabosch, Andreas Pflug, Uwe Czarnetzki, Ralf-Peter Brinkmann, Michael Siemers
  • Publication number: 20110248634
    Abstract: A method of establishing a DC bias in front of at least one electrode in a plasma operating apparatus by applying an RF voltage with at least two harmonic frequency components with a controlled relative phase between the components, where at least one of the higher frequency components is established as an even multiple of the lower frequency component.
    Type: Application
    Filed: July 11, 2008
    Publication date: October 13, 2011
    Applicant: RUHR-UNIVERSITAT
    Inventors: Brian George Heil, Uwe Czarnetzki, Ralf Peter Brinkmann, Thomas Mussenbrock
  • Patent number: 7878045
    Abstract: Device for determining the density of a plasma, with of a probe (1) which can be immersed into the plasma, with a probe head (2) in form of a three-axis ellipsoid, and a handle (3) connected to the probe head (2), wherein the probe head (2) has a sheath (4) and a probe core (5, 5a) surrounded by the sheath (4), wherein the surface (8) of the probe core (5, 5a) has electrode areas (9, 10) of opposite polarity which are insulated from each other. The probe core consists of electrodes (6, 7), to which a signal is applied. The absorption of that signal is measured and evaluated as a function of the frequency. Based on a multipole expansion, a mathematical model is constructed with which the absorption spectrum of the probe can be unambiguously evaluated. For a particular design of the probe, the response can be restricted to a single resonance, from which the electron density of the plasma (to be inferred from the resonance frequency) can be found by an unambiguous evaluation algorithm.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: February 1, 2011
    Inventor: Ralf-Peter Brinkmann
  • Publication number: 20090133471
    Abstract: Device for determining the density of a plasma, with of a probe (1) which can be immersed into the plasma, with a probe head (2) in form of a three-axis ellipsoid, and a handle (3) connected to the probe head (2), wherein the probe head (2) has a sheath (4) and a probe core (5, 5a) surrounded by the sheath (4), wherein the surface (8) of the probe core (5, 5a) has electrode areas (9, 10) of opposite polarity which are insulated from each other. The probe core consists of electrodes (6, 7), to which a signal is applied. The absorption of that signal is measured and evaluated as a function of the frequency. Based on a multipole expansion, a mathematical model is constructed with which the absorption spectrum of the probe can be unambiguously evaluated. For a particular design of the probe, the response can be restricted to a single resonance, from which the electron density of the plasma (to be inferred from the resonance frequency) can be found by an unambiguous evaluation algorithm.
    Type: Application
    Filed: March 23, 2007
    Publication date: May 28, 2009
    Inventor: Ralf-Peter Brinkmann
  • Patent number: 6524448
    Abstract: The present invention relates to a system for executing a plasma-based sputtering method, such as for example a PVD (Physical Vapor Deposition) method. In a process chamber (1), a plasma (2) is produced in order to accelerate ionized particles, carried away from a sputter target (21), through the plasma (2) towards a substrate (3), using an electrical field. In the process chamber (1), between the plasma (2) and the substrate (3) a magnetic field component (6) is produced by that is situated parallel to a substrate surface (5). Through the magnetic field component (6), the angular distribution of the ionized particles is deflected from its flight path perpendicular to the substrate surface, so that impact angles are produced that have a greater angular scattering.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: February 25, 2003
    Assignee: Infineon Technologies AG
    Inventors: Ralf-Peter Brinkmann, Alfred Kersch
  • Publication number: 20020036132
    Abstract: The present invention relates to a system for executing a plasma-based sputtering method, such as for example a PVD (Physical Vapor Deposition) method. In a process chamber (1), a plasma (2) is produced in order to accelerate ionized particles, carried away from a sputter target (21), through the plasma (2) towards a substrate (3), using an electrical field. In the process chamber (1), between the plasma (2) and the substrate (3) a magnetic field component (6) is produced that is situated parallel to a substrate surface (5). Through the magnetic field component (6), the angular distribution of the ionized particles is deflected from its flight path perpendicular to the substrate surface, so that impact angles are produced that have a greater angular scattering.
    Type: Application
    Filed: April 11, 2001
    Publication date: March 28, 2002
    Inventors: Ralf-Peter Brinkmann, Alfred Kersch