Patents by Inventor Ralf-Uwe Bauer

Ralf-Uwe Bauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11827756
    Abstract: Disclosed are free-flowing mixtures comprising a granular material comprising a thermoplastic elastomer, a functionalized thermoplastic elastomer, at least one phase change material bound to the thermoplastic elastomers, and at least one binding agent capable of adsorbing and/or absorbing portions of the phase change material. The binding agent is substantially present between the granulate materials, and either: i) the proportion by weight of the phase change material in the granular material is 60% to 90% and the binding agent is a non-silicate binding agent, or ii) the proportion by weight of the phase change material in the granular material is more than 70% and up to 90%. Also described are various compositions comprising the mixture and methods for producing the mixture.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: November 28, 2023
    Assignee: Smart Advanced Systems GmbH
    Inventor: Ralf-Uwe Bauer
  • Publication number: 20230159711
    Abstract: Disclosed are free-flowing mixtures comprising a granular material comprising a thermoplastic elastomer, a functionalized thermoplastic elastomer, at least one phase change material bound to the thermoplastic elastomers, and at least one binding agent capable of adsorbing and/or absorbing portions of the phase change material. The binding agent is substantially present between the granulate materials, and either: i) the proportion by weight of the phase change material in the granular material is 60% to 90% and the binding agent is a non-silicate binding agent, or ii) the proportion by weight of the phase change material in the granular material is more than 70% and up to 90%. Also described are various compositions comprising the mixture and methods for producing the mixture.
    Type: Application
    Filed: January 20, 2023
    Publication date: May 25, 2023
    Inventor: Ralf-Uwe Bauer
  • Patent number: 10905645
    Abstract: Methods for producing cellulose articles having controlled release of active ingredient include dispersing pulp in aqueous direct solvent for cellulose to form a slurry. Organically modified or ion-exchange-activated phyllosilicate is homogenized in a direct solvent for cellulose with exfoliation by shearing, then mixed with the slurried pulp. A mixture of active ingredient and a lipophilic matrix material or a water-in-oil (“W/O”) emulsion containing active ingredient is stabilized with thickener, converted into a gel-like paste, and mixed with the slurried pulp. Water is stripped from the mixture until all cellulose is dissolved, the mixture is formed into shaped articles, and dried. Exemplary active ingredients include cosmetic active ingredients, fat-soluble vitamins or apolar plant extracts. Domains of active ingredient and matrix material or emulsion containing active ingredient are present as fine divisions within the inventive articles.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: February 2, 2021
    Assignee: smartpolymer GmbH
    Inventors: Ralf-Uwe Bauer, Frank Meister, Michael Mooz, Markus Krieg, Sabine Riede
  • Patent number: 10468164
    Abstract: The invention describes electrically conductive shaped bodies with an inherent positive temperature coefficient (PTC), produced from a composition which contains at least one organic matrix polymer (compound component A), at least one submicroscale or nanoscale, electrically conductive additive (compound component B) and at least one phase-change material with a phase-transition temperature in the range from ?42° C. to +150° C. (compound component D). The phase-change material is incorporated into an organic network (compound component C). The electrically conductive shaped body with an inherent PTC effect is, in particular, a filament, a fibre, a spun-bonded web, a foam, a film, a foil or an injection-moulded article. The switching point for the PTC behavior is dependent on the type and also the phase-conversion temperature of the phase-change material. By way of example, a self-regulating surface heater in the form of a film, foil and/or textile can be realized in this way.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: November 5, 2019
    Assignee: THUERINGISCHES INSTITUT FUER TEXTIL-UND KUNSTSTOFF-FORSCHUNG E.V.
    Inventors: Klaus Heinemann, Ralf-Uwe Bauer, Thomas Welzel, Mario Schrödner, Frank Schubert, Sabine Riede
  • Patent number: 10443153
    Abstract: The invention relates to molded cellulose bodies, in particular fibers, filaments, directly spun nonwovens, films, or foams which have flame-resistant properties. The fibers and filaments can be further processed as textiles into yarns, wovens, knitted fabrics, and nonwovens. The molded bodies are produced from solutions of cellulose and melamine cyanurate or cellulose and crosslinked or partially crosslinked melamine resin particles in an organic solvent. The melamine cyanurate or the melamine resin particles provide the molded cellulose bodies with flame-retardant properties. The molded cellulose bodies made of cellulose and melamine cyanurate or melamine resin particles can further contain flame retardants, in particular flame retardants which act synergistically, in a particulate form. The obtained textile fibers and nonwoven materials have a soft touch and can be processed or finished as filaments or yarns on conventional textile machines.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: October 15, 2019
    Assignee: smartpolymer GmbH
    Inventors: Frank-Günter Niemz, Marcus Krieg, Michael Mooz, Ralf-Uwe Bauer, Sabine Riede
  • Publication number: 20190237224
    Abstract: The invention describes electrically conductive shaped bodies with an inherent positive temperature coefficient (PTC), produced from a composition which contains at lest one organic matrix polymer (compound component A), at least one submicroscale or nanoscale, electrically conductive additive (compound component B) and at least one phase-change material with a phase-transition temperature in the range from ?42° C. to +150° C. (compound component D). The phase-change material is incorporated into an organic network (compound component C). The electrically conductive shaped body with an inherent PTC effect is, in particular, a filament, a fibre, a spun-bonded web, a foam, a film, a foil or an injection-moulded article. The switching point for the PTC behavior is dependent on the type and also the phase-conversion temperature of the phase-change material. By way of example, a self-regulating surface heater in the form of a film, foil and/or textile can be realized in this way.
    Type: Application
    Filed: June 22, 2017
    Publication date: August 1, 2019
    Inventors: Klaus HEINEMANN, Ralf-Uwe BAUER, Thomas WELZEL, Mario SCHRÖDNER, Frank SCHUBERT, Sabine RIEDE
  • Patent number: 10053577
    Abstract: The invention molecularly equips polyester or polyolefin molding compositions in situ with zinc ions before extrusion, enabling direct processing of the molding compositions from the melt even at high temperatures and ensuring a long-term antibacterial action. The inventive molding compositions include at least one polyester polymer or polyolefin polymer and at least one zinc salt-organoligand complex.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: August 21, 2018
    Assignee: THUERINGISCHES INSTITUT FUER TEXTIL-UND KUNSTSTOFF-FORSCHUNG E.V.
    Inventors: Rüdiger Strubl, Klaus Heinemann, Frank Schubert, Ralf-Uwe Bauer, Sabine Riede
  • Publication number: 20170349745
    Abstract: The invention molecularly equips polyester or polyolefin molding compositions in situ with zinc ions before extrusion, enabling direct processing of the molding compositions from the melt even at high temperatures and ensuring a long-term antibacterial action. The inventive molding compositions include at least one polyester polymer or polyolefin polymer and at least one zinc salt-organoligand complex.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 7, 2017
    Inventors: Rüdiger STRUBL, Klaus HEINEMANN, Frank SCHUBERT, Ralf-Uwe BAUER, Sabine RIEDE
  • Publication number: 20170333331
    Abstract: Methods for producing cellulose articles having controlled release of active ingredient include dispersing pulp in aqueous direct solvent for cellulose to form a slurry. Organically modified or ion-exchange-activated phyllosilicate is homogenized in a direct solvent for cellulose with exfoliation by shearing, then mixed with the slurried pulp. A mixture of active ingredient and a lipophilic matrix material or a water-in-oil (“W/O”) emulsion containing active ingredient is stabilized with thickener, converted into a gel-like paste, and mixed with the slurried pulp. Water is stripped from the mixture until all cellulose is dissolved, the mixture is formed into shaped articles, and dried. Exemplary active ingredients include cosmetic active ingredients, fat-soluble vitamins or apolar plant extracts. Domains of active ingredient and matrix material or emulsion containing active ingredient are present as fine divisions within the inventive articles.
    Type: Application
    Filed: December 9, 2015
    Publication date: November 23, 2017
    Inventors: Ralf-Uwe BAUER, Frank MEISTER, Michael MOOZ, Markus KRIEG, Sabine RIEDE
  • Publication number: 20170209346
    Abstract: What is described is a shaped cellulose body having physiologically active mineral substance compounds distributed therein, which are bound within the cellulose matrix of the shaped body and are distributed homogeneously over the cross section thereof. The mineral substance compound is soluble in water, and contains at least one element selected from the group comprising sodium, potassium, magnesium, calcium, iron, copper, manganese and zinc. Even after repeated washing, the shaped cellulose body still contains a high proportion of the mineral substance. It preferably takes the form of fibers, filaments, films or spunbonded webs formed from these fibers. It is especially intended for topical purposes on the human skin, specifically for cosmetic or dermatological purposes. These shaped bodies can be processed to give sheetlike structures, laminates, composite materials and webs, alone or in a mixture with other shaped bodies and fibers.
    Type: Application
    Filed: April 8, 2015
    Publication date: July 27, 2017
    Inventors: Marcus KRIEG, Ralf-Uwe BAUER, Michael MOOZ, Sabine RIEDE
  • Publication number: 20170016148
    Abstract: The invention relates to molded cellulose bodies, in particular fibers, filaments, directly spun nonwovens, films, or foams which have flame-resistant properties. The fibers and filaments can be further processed as textiles into yarns, wovens, knitted fabrics, and nonwovens. The molded bodies are produced from solutions of cellulose and melamine cyanurate or cellulose and crosslinked or partially crosslinked melamine resin particles in an organic solvent. The melamine cyanurate or the melamine resin particles provide the molded cellulose bodies with flame-retardant properties. The molded cellulose bodies made of cellulose and melamine cyanurate or melamine resin particles can further contain flame retardants, in particular flame retardants which act synergistically, in a particulate form. The obtained textile fibers and nonwoven materials have a soft touch and can be processed or finished as filaments or yarns on conventional textile machines.
    Type: Application
    Filed: March 5, 2015
    Publication date: January 19, 2017
    Inventors: Frank-Günter NIEMZ, Marcus KRIEG, Michael MOOZ, Ralf-Uwe BAUER, Sabine RIEDE
  • Publication number: 20120201995
    Abstract: The invention relates to a molded body having a polymeric coating in which cladding material is prepared from a polymer solution; carrier material is guided through a feed channel and an outlet opening into a coating chamber, the feed channel traversing a container holding the cladding material; the cladding material is guided through a predefined gap into the coating chamber, and contact is effected between the cladding material and the carrier material to form a preliminary layer; the carrier material and preliminary layer are guided through an outlet opening into a relaxation zone; by setting the withdrawal of the carrier material via the outlet opening into the relaxation zone, the cladding material, the carrier material or both can be altered; and solvent is removed from the polymer layer. The molded bodies are preferably fibers, in particular bristles, such as brush or paint brush bristles.
    Type: Application
    Filed: September 14, 2010
    Publication date: August 9, 2012
    Inventors: Jürgen Melle, Ralf-Uwe Bauer, Frank-Günter Niemz, Sabine Riede
  • Publication number: 20090051068
    Abstract: The invention relates to a method for producing molded bodies from proteins by ionic liquids, in particular in 1,3-dialkyl-imidazolium-acetates or 1,3-dialkyl-imidazolium-chloride as solvents in which the protein is dissolved, the solution is formed into fibers and foils, or membranes, respectively, the protein is regenerated by precipitation in protide solutions, the solvent is separated by washing and the molded bodies are tried. Furthermore the invention relates to molded bodies produced by said method.
    Type: Application
    Filed: January 8, 2007
    Publication date: February 26, 2009
    Applicant: THÜRINGISCHES INSTITUTE FÜR TEXTIL-UND KUNSTSTOFF-FORSCHUNG E.V.
    Inventors: Silke Brauer, Birgit Kosan, Frank Meister, Ralf-Uwe Bauer
  • Patent number: 7217317
    Abstract: Device and procedure for safely conveying and handling a cellulose solution suitable for manufacturing solvent-spun cellulose molded parts, in particular for manufacturing fibers, films and membranes, in devices for conveying and handling the spinnable cellulose solution, provided with a tempering device, wherein the temperature in the tempering system is reduced once the temperature in the cellulose solution has exceeded at least a first limiting temperature, as a result of which the temperature of the spinning solution drops and the reaction mixture is prevented from passing through. A procedure and device with two switching stages is also disclosed.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: May 15, 2007
    Assignee: Zimmer AG
    Inventors: Ralf-Uwe Bauer, Enrico Brandt
  • Patent number: 7175792
    Abstract: Process for manufacture of cellulose mouldings, such as fibres, filaments, or films, from TCF-bleached or ECF-bleached cellulose, in which the bleached cellulose is dissolved in an aqueous tertiary aminoxide to form a mouldable cellulose, the cellulose solution deforms, and the moulding comes into being by coagulation of the deformed solution, characterized in that, to reduce the cellulose decomposition in the process, TCF-bleached cellulose is used comprising carboxyl group content in the range from 1 to 35 ?mol/g or an ECF-bleached cellulose with carboxyl group content in the range from 1 to 50 ?mol/g. Cellulose mouldings having a reduced cellulose decomposition may be formed by said process.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: February 13, 2007
    Assignee: Zimmer AG
    Inventors: Ralf-Uwe Bauer, Uwe Kind
  • Patent number: 7115187
    Abstract: The invention relates to a method for continually producing a suspension of cellulose in an aqueous tertiary amine oxide. The method includes (a) mixing cellulose and an amine oxide-free aqueous phase to form a cellulose suspension in a mass ratio in the range of 1:3 to 1:40, (b) dehydrating the cellulose suspension, wherein the dehydrated cellulose suspension has a cellulose content in the range of 20 to 80 percent-by-mass; (c) mixing the cellulose suspension with an aqueous amine oxide while the cellulose suspension is falling through a vertical fall zone to obtain an aqueous amine oxide-cellulose suspension with an amine oxide content in the range of 70 to 80 percent-by-mass; and (d) conveying the aqueous amine oxide-cellulose suspension through a horizontal shear zone. The invention also relates to a device for carrying out this method.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: October 3, 2006
    Assignee: Alceru Schwarza GmbH
    Inventors: Ralf-Uwe Bauer, MUwe Kind
  • Patent number: 6972102
    Abstract: The invention relates to a method for continually producing an extrusion solution for producing cellulosed shaped bodies, such as fibres and films, according to the lyocell method. According to the inventive method, (a) a cellulose suspension is produced from cellulose and an aqueous phase in a mass ratio ranging from 1:3 to 1:40, whereby shearing is maintained for between 5 to 200 minutes. (b) The cellulose suspension is dewatered to form a material having a cellulose content ranging from 20 to 80 mass % and the aqueous phase produced thereby is at least partially returned to step (a). (c) The humid cellulose material being homogenised is transported through a first shearing zone in the absence of N-methylmorpholine-N-oxide.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: December 6, 2005
    Assignee: Zimmer AG
    Inventors: Ralf-Uwe Bauer, Uwe Kind
  • Patent number: 6814904
    Abstract: Process for producing formed cellulosic articles, particularly fibers and filaments, comprising a) dissolving cellulose in an aqueous solution of a tertiary amine oxide, especially N-methyl-morpholine N-oxide, and b) extruding the cellulose solution through an extrusion die via an air gap into a precipitation bath with precipitation of the formed articles, said cellulose solution and/or said precipitation bath containing a tenside, characterized in that in the step b) the tenside content c of the cellulose solution and/or of the precipitation bath is in the range 100 ppm>c>5 ppm, and the width of the air gap is in the range from 2 to 20 mm. With this process the air gap width can be considerably reduced without deterioration of the properties of the fibers/filaments.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: November 9, 2004
    Assignee: Zimmer AG
    Inventors: Ralf-Uwe Bauer, Frank-Gunter Niemz
  • Patent number: 6676739
    Abstract: The invention relates to a method for producing a cellulose solution in an aqueous amine oxide, preferably N-methyl-morpholine-N-oxide, for processing to form cellulosed moulded bodies according to the Lyocell method, whereby said solution has an increased thermal stability. Cellulose is suspended in an aqueous amine oxide and the suspension is converted into the cellulose solution. The inventive method is characterised in that the base use of the cellulose used for producing the solution and of the optionally used additives is detected in a dispersion in aqueous amine oxide solution and in that the cellulose solution is formed by adding a base quantity which matches the detected own consumption of the cellulose and optionally the additives. Cellulose solutions having a stability which is essentially independent from the provenance of the used cellulose can he formed.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: January 13, 2004
    Assignee: Thuringishces Institut fur Textil und Kunststoff-Forschung E.V.
    Inventors: Birgit Kosan, Christoph Michels, Ralf-Uwe Bauer, Michael Mooz, Frank-Gunter Niemz
  • Publication number: 20030159620
    Abstract: The invention relates to a method for producing a cellulose solution in an aqueous amine oxide, preferably N-methyl-morpholine-N-oxide, for processing to form cellulosed moulded bodies according to the Lyocell method, whereby said solution has an increased thermal stability. Cellulose is suspended in an aqueous amine oxide and the suspension is converted into the cellulose solution. The inventive method is characterised in that the base use of the cellulose used for producing the solution and of the optionally used additives is detected in a dispersion in aqueous amine oxide solution and in that the cellulose solution is formed by adding a base quantity which matches the detected own consumption of the cellulose and optionally the additives. Cellulose solutions having a stability which is essentially independent from the provenance of the used cellulose can be formed.
    Type: Application
    Filed: October 29, 2002
    Publication date: August 28, 2003
    Inventors: Birgit Kosan, Christoph Michels, Ralf-Uwe Bauer, Michael Mooz, Frank-Gunter Niemz