Patents by Inventor Ralf van Otten

Ralf van Otten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10914611
    Abstract: A system includes a magnet having an axis of rotation, the magnet being configured to produce a magnetic field. The system further includes a plurality of magnetoresistive sensor elements, each of the magnetoresistive sensor elements having a magnetic free layer configured to generate a vortex magnetization pattern in the magnetic free layer, and the magnetoresistive sensor elements being configured to produce output signals in response to the magnetic field. A rotation angle of a rotating element to which the magnet is coupled may be determined using the plurality of output signals.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: February 9, 2021
    Assignee: NXP B.V.
    Inventors: Stephan Marauska, Edwin Schapendonk, Jörg Kock, Dennis Helmboldt, Ralf van Otten, Jaap Ruigrok
  • Patent number: 10914609
    Abstract: A system includes a magnet configured to produce a magnetic field, the magnet having an asymmetric magnetization configuration that produces a distinct feature in the magnetic field. The asymmetric magnetization configuration can be produced via an asymmetric physical characteristic, nonuniform magnetization strengths, nonuniform magnetization distributions, off-centered magnet, and so forth. Magnetic field sensors are configured to produce output signals in response to the magnetic field, the output signals being indicative of the distinct feature in the magnetic field. A processing circuit receives the output signals and determines a rotation angle for the magnet using the output signals, the rotation angle having a range of 0-360°.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: February 9, 2021
    Assignee: NXP B.V.
    Inventors: Stephan Marauska, Edwin Schapendonk, Dennis Helmboldt, Jaap Ruigrok, Ralf van Otten, Jan Przytarski, Jörg Kock
  • Publication number: 20200064157
    Abstract: A system includes a magnet having an axis of rotation, the magnet being configured to produce a magnetic field. The system further includes a plurality of magnetoresistive sensor elements, each of the magnetoresistive sensor elements having a magnetic free layer configured to generate a vortex magnetization pattern in the magnetic free layer, and the magnetoresistive sensor elements being configured to produce output signals in response to the magnetic field. A rotation angle of a rotating element to which the magnet is coupled may be determined using the plurality of output signals.
    Type: Application
    Filed: August 27, 2018
    Publication date: February 27, 2020
    Inventors: Stephan Marauska, Edwin Schapendonk, Jörg Kock, Dennis Helmboldt, Ralf van Otten, Jaap Ruigrok
  • Publication number: 20190383644
    Abstract: A system includes a magnet configured to produce a magnetic field, the magnet having an asymmetric magnetization configuration that produces a distinct feature in the magnetic field. The asymmetric magnetization configuration can be produced via an asymmetric physical characteristic, nonuniform magnetization strengths, nonuniform magnetization distributions, off-centered magnet, and so forth. Magnetic field sensors are configured to produce output signals in response to the magnetic field, the output signals being indicative of the distinct feature in the magnetic field. A processing circuit receives the output signals and determines a rotation angle for the magnet using the output signals, the rotation angle having a range of 0-360°.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 19, 2019
    Inventors: Stephan Marauska, Edwin Schapendonk, Dennis Helmboldt, Jaap Ruigrok, Ralf van Otten, Jan Przytarski, Jörg Kock
  • Patent number: 10006972
    Abstract: A magnetic field sensor is disclosed for providing an output signal in response to an external magnetic field. The sensor comprises a primary magnetic field transducer for producing a primary signal in response to the external magnetic field and having a first magnetic field saturation characteristic; a secondary magnetic field transducer for producing a secondary signal in response to the external magnetic field and having a second magnetic field saturation characteristic. The first magnetic field saturation characteristic is different from the second magnetic field saturation characteristic. The sensor is configured to use the secondary signal to correct for errors in the output signal arising from saturation of the primary transducer.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: June 26, 2018
    Assignee: NXP B.V.
    Inventors: Klaus Reimann, Robert van Veldhoven, Jaap Ruigrok, Selcuk Ersoy, Ralf van Otten, Jörg Kock
  • Patent number: 9705489
    Abstract: A cascode transistor circuit comprising a depletion-mode switch in series with a normally-off switch between a drain output terminal and a source output terminal. The circuit also includes a controller comprising a controller output terminal configured to provide a normally-on control signal for a normally-on control terminal of the depletion-mode switch, wherein the normally-on control signal is independent of the normally-off control signal; a negative voltage source configured to provide a negative voltage to the normally-on control terminal of the depletion-mode switch; and a feedback capacitance between the drain output terminal and a control node in a circuit path between the controller output terminal and the normally-on control terminal of the depletion-mode switch.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: July 11, 2017
    Assignee: Nexperia B.V.
    Inventors: Ralf van Otten, Franciscus Schoofs, Matthias Rose, Hendrik Bergveld
  • Publication number: 20170139016
    Abstract: A magnetic field sensor is disclosed for providing an output signal in response to an external magnetic field. The sensor comprises a primary magnetic field transducer for producing a primary signal in response to the external magnetic field and having a first magnetic field saturation characteristic; a secondary magnetic field transducer for producing a secondary signal in response to the external magnetic field and having a second magnetic field saturation characteristic. The first magnetic field saturation characteristic is different from the second magnetic field saturation characteristic. The sensor is configured to use the secondary signal to correct for errors in the output signal arising from saturation of the primary transducer.
    Type: Application
    Filed: November 10, 2016
    Publication date: May 18, 2017
    Inventors: Klaus Reimann, Robert van Veldhoven, Jaap Ruigrok, Selcuk Ersoy, Ralf van Otten, Jörg Kock
  • Publication number: 20160094218
    Abstract: A cascode transistor circuit comprising a depletion-mode switch in series with a normally-off switch between a drain output terminal and a source output terminal. The circuit also includes a controller comprising a controller output terminal configured to provide a normally-on control signal for a normally-on control terminal of the depletion-mode switch, wherein the normally-on control signal is independent of the normally-off control signal; a negative voltage source configured to provide a negative voltage to the normally-on control terminal of the depletion-mode switch; and a feedback capacitance between the drain output terminal and a control node in a circuit path between the controller output terminal and the normally-on control terminal of the depletion-mode switch.
    Type: Application
    Filed: August 25, 2015
    Publication date: March 31, 2016
    Inventors: Ralf van Otten, Franciscus Schoofs, Matthias Rose, Hendrik Bergveld