Patents by Inventor Ralph A. Reisfeld

Ralph A. Reisfeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10335420
    Abstract: An aqueous tumor-targeting liposome nanoparticle composition comprises an aqueous dispersion of liposome nanoparticles. The nanoparticles preferably encapsulate an anti-cancer chemotherapeutic agent, which can be added to a pre-formed liposome composition or can be incorporated in the liposomes during the formation of the liposomes. The liposome nanoparticles comprise a legumain-targeting lipid admixed with one or more other micelle or vesicle-forming lipid materials in the form of nanoparticulate liposomes dispersed in an aqueous carrier. A preferred tumor-targeting liposome nanoparticle composition comprises a legumain-targeting lipid component and polyethylene glycol-conjugated lipid component. The legumain-targeting lipid component comprising a hydrophobic lipid portion covalently attached to a legumain-binding moiety.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: July 2, 2019
    Assignee: The Scripps Research Institute
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo, Debbie Liao, Ze Liu, Tingmei Chen, Si Chen, Dan Lu
  • Publication number: 20170224838
    Abstract: An aqueous tumor-targeting liposome nanoparticle composition comprises an aqueous dispersion of liposome nanoparticles. The nanoparticles preferably encapsulate an anti-cancer chemotherapeutic agent, which can be added to a pre-formed liposome composition or can be incorporated in the liposomes during the formation of the liposomes. The liposome nanoparticles comprise a legumain-targeting lipid admixed with one or more other micelle or vesicle-forming lipid materials in the form of nanoparticulate liposomes dispersed in an aqueous carrier. A preferred tumor-targeting liposome nanoparticle composition comprises a legumain-targeting lipid component and polyethylene glycol-conjugated lipid component. The legumain-targeting lipid component comprising a hydrophobic lipid portion covalently attached to a legumain-binding moiety.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Applicant: The Scripps Research Institute
    Inventors: Ralph A. REISFELD, Rong XIANG, Yunping LUO, Debbie LIAO, Ze LIU, Tingmei CHEN, Si CHEN, Dan LU
  • Patent number: 9655815
    Abstract: A DNA vaccine suitable for eliciting an immune response against cancer cells comprises a DNA construct operably encoding a cancer-associated Inhibitor of Apoptosis-family protein and an immunoactive gene product, such as a cytokine or a ligand for a natural killer cell surface receptor, in a pharmaceutically acceptable carrier. A preferred cytokine is CCL21. Preferred ligands for a natural killer cell surface receptor include human MICA, human MICB, human ULBP1, human ULBP2, and human ULBP3. The cancer-associated Inhibitor of Apoptosis (IAP)-family protein is preferably a survivin protein or livin protein. Method of inhibiting tumor growth by administering the vaccine of the invention to a mammal is also described.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: May 23, 2017
    Assignee: The Scripps Research Institute
    Inventors: Rong Xiang, He Zhou, Ralph A Reisfeld
  • Patent number: 9629922
    Abstract: The present invention provides an aqueous tumor-targeting liposome nanoparticle composition comprising an aqueous dispersion of liposome nanoparticles. The nanoparticles preferably encapsulate an anti-cancer chemotherapeutic agent, which can be added to a pre-formed liposome composition or can be incorporated in the liposomes during the formation of the liposomes. The liposome nanoparticles comprise a legumain-targeting lipid admixed with one or more other micelle or vesicle-forming lipid materials in the form of nanoparticulate liposomes dispersed in an aqueous carrier. A preferred tumor-targeting liposome nanoparticle composition comprises (a) a legumain-targeting lipid component, (b) a zwitterionic lipid component; (c) an amino-substituted lipid component; (d) a neutral lipid component; and (e) polyethylene glycol-conjugated lipid component. The legumain-targeting lipid component comprising a hydrophobic lipid portion covalenetly attached to a legumain-binding moiety.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: April 25, 2017
    Assignee: The Scripps Research Institute
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo, Debbie Liao, Ze Liu, Tingmei Chen, Si Chen, Dan Lu
  • Patent number: 9616137
    Abstract: The present invention provides an aqueous tumor-targeting liposome nanoparticle composition comprising an aqueous dispersion of liposome nanoparticles. The nanoparticles preferably encapsulate an anti-cancer chemotherapeutic agent, which can be added to a pre-formed liposome composition or can be incorporated in the liposomes during the formation of the liposomes. The liposome nanoparticles comprise a legumain-targeting lipid admixed with one or more other micelle or vesicle-forming lipid materials in the form of nanoparticulate liposomes dispersed in an aqueous carrier. A preferred tumor-targeting liposome nanoparticle composition comprises (a) a legumain-targeting lipid component, (b) a zwitterionic lipid component; (c) an amino-substituted lipid component; (d) a neutral lipid component; and (e) polyethylene glycol-conjugated lipid component. The legumain-targeting lipid component comprising a hydrophobic lipid portion covalently attached to a legumain-binding moiety.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: April 11, 2017
    Assignee: The Scripps Research Institute
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo, Debbie Liao, Ze Liu, Tingmei Chen, Si Chen, Dan Lu
  • Publication number: 20150175996
    Abstract: The present invention provides a DNA composition comprising a DNA minigene construct that encodes for a polypeptide comprising a plurality of immunogenic fragments of a cysteine endopeptidase that is expressed in tumor-associated cells. The immunogenic fragments are joined together serially by a linker peptide between each successive fragment in the polypeptide. The polypeptide is capable of eliciting an immune response against the tumor-associated cells, is expressible in immune cells, and is incorporated in a pharmaceutically acceptable carrier.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 25, 2015
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo, Susanna Lewen
  • Publication number: 20140322249
    Abstract: A DNA vaccine suitable for eliciting an immune response against cancer cells comprises a DNA construct operably encoding a cancer-associated Inhibitor of Apoptosis-family protein and an immunoactive gene product, such as a cytokine or a ligand for a natural killer cell surface receptor, in a pharmaceutically acceptable carrier. A preferred cytokine is CCL21. Preferred ligands for a natural killer cell surface receptor include human MICA, human MICB, human ULBP1, human ULBP2, and human ULBP3. The cancer-associated Inhibitor of Apoptosis (IAP)-family protein is preferably a survivin protein or livin protein. Method of inhibiting tumor growth by administering the vaccine of the invention to a mammal is also described.
    Type: Application
    Filed: May 5, 2014
    Publication date: October 30, 2014
    Applicant: The Scripps Research Institute
    Inventors: Rong Xiang, He Zhou, Ralph A Reisfeld
  • Patent number: 8716254
    Abstract: A DNA vaccine suitable for eliciting an immune response against cancer cells comprises a DNA construct operably encoding a cancer-associated Inhibitor of Apoptosis-family protein and an immunoactive gene product, such as a cytokine or a ligand for a natural killer cell surface receptor, in a pharmaceutically acceptable carrier. A preferred cytokine is CCL21. Preferred ligands for a natural killer cell surface receptor include human MICA, human MICB, human ULBP1, human ULBP2, and human ULBP3. The cancer-associated Inhibitor of Apoptosis (IAP)-family protein is preferably a survivin protein or livin protein. Method of inhibiting tumor growth by administering the vaccine of the invention to a mammal is also described.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: May 6, 2014
    Assignee: The Scripps Research Institute
    Inventors: Rong Xiang, He Zhou, Ralph A. Reisfeld
  • Publication number: 20130330399
    Abstract: The present invention provides an aqueous tumor-targeting liposome nanoparticle composition comprising an aqueous dispersion of liposome nanoparticles. The nanoparticles preferably encapsulate an anti-cancer chemotherapeutic agent, which can be added to a pre-formed liposome composition or can be incorporated in the liposomes during the formation of the liposomes. The liposome nanoparticles comprise a legumain-targeting lipid admixed with one or more other micelle or vesicle-forming lipid materials in the form of nanoparticulate liposomes dispersed in an aqueous carrier. A preferred tumor-targeting liposome nanoparticle composition comprises (a) a legumain-targeting lipid component, (b) a zwitterionic lipid component; (c) an amino-substituted lipid component; (d) a neutral lipid component; and (e) polyethylene glycol-conjugated lipid component. The legumain-targeting lipid component comprising a hydrophobic lipid portion covalenetly attached to a legumain-binding moiety.
    Type: Application
    Filed: September 2, 2011
    Publication date: December 12, 2013
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo, Debbie Liao, Ze Liu, Tingmei Chen, Si Chen, Dan Lu
  • Patent number: 8241637
    Abstract: A method of inhibiting endothelial cell proliferation in a mammal is provided. The method comprises the step of administering to the mammal an effective immunological response eliciting amount of a DNA composition comprising a DNA construct operably encoding a VEGF receptor polypeptide and a pharmaceutically acceptable carrier therefor, whereby said mammal exhibits an immune response elicited by vaccine and specific to proliferating endothelial cells. The methods of this invention inhibit vascular endothelial cell proliferation in the tumor micro-environment. Angiogenesis inhibition and subsequent decrease in tumor growth and dissemination is achieved.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: August 14, 2012
    Assignee: The Scripps Research Institute
    Inventors: Ralph A. Reisfeld, Andreas G. Niethammer, Rong Xiang
  • Publication number: 20120058177
    Abstract: The present invention provides an aqueous tumor-targeting liposome nanoparticle composition comprising an aqueous dispersion of liposome nanoparticles. The nanoparticles preferably encapsulate an anti-cancer chemotherapeutic agent, which can be added to a pre-formed liposome composition or can be incorporated in the liposomes during the formation of the liposomes. The liposome nanoparticles comprise a legumain-targeting lipid admixed with one or more other micelle or vesicle-forming lipid materials in the form of nanoparticulate liposomes dispersed in an aqueous carrier. A preferred tumor-targeting liposome nanoparticle composition comprises (a) a legumain-targeting lipid component, (b) a zwitterionic lipid component; (c) an amino-substituted lipid component; (d) a neutral lipid component; and (e) polyethylene glycol-conjugated lipid component. The legumain-targeting lipid component comprising a hydrophobic lipid portion covalenetly attached to a legumain-binding moiety.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 8, 2012
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo, Debbie Liao, Ze Liu, Tingmei Chen, Si Chen, Dan Lu
  • Publication number: 20120039931
    Abstract: A method of inhibiting endothelial cell proliferation in a mammal is provided. The method comprises the step of administering to the mammal an effective immunological response eliciting amount of a DNA composition comprising a DNA construct operably encoding a VEGF receptor polypeptide and a pharmaceutically acceptable carrier therefor, whereby said mammal exhibits an immune response elicited by vaccine and specific to proliferating endothelial cells. The methods of this invention inhibit vascular endothelial cell proliferation in the tumor micro-environment. Angiogenesis inhibition and subsequent decrease in tumor growth and dissemination is achieved.
    Type: Application
    Filed: October 25, 2011
    Publication date: February 16, 2012
    Applicant: THE SCRIPPS RESEARCH INSTITUTE
    Inventors: Ralph A. REISFELD, Andreas G. NIETHAMMER, RONG XIANG
  • Patent number: 8053421
    Abstract: A DNA vaccine suitable for eliciting an immune response against cancer cells comprises a polynucleotide construct operably encoding an a Fra-1 protein, such as a polyubiquitinated human Fra-1 protein, and IL-18, such as human IL-18, in a pharmaceutically acceptable carrier. In a preferred embodiment, the polynucleotide construct is operably incorporated in an attenuated bacterial vector, such as an attenuated Salmonella typhimurium, particularly a doubly attenuated aroA? dam? S. typhimurium. Transformed host cells, methods of inhibiting tumor growth, of vaccinating a patient against cancer, and of delivering genetic material to a mammalian cell in vivo are also described.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: November 8, 2011
    Assignee: The Scripps Research Institute
    Inventors: Yunping Luo, Rong Xiang, Ralph A. Reisfeld
  • Patent number: 8048428
    Abstract: A DNA composition effective for inhibiting endothelial cell proliferation comprises a DNA construct operably encoding a vascular endothelial growth factor (VEGF) receptor polypeptide, which can be a full length VEGF receptor protein or an immunogenic fragment thereof. This invention provides DNA compositions that encode VEGF receptor-2 (KDR), VEGF receptor-1 (Flt-1), or Flk-1 (the murine homolog of KDR), as well as methods of using such a DNA composition to inhibit vascular endothelial cell proliferation in the tumor micro-environment. Angiogenesis inhibition and subsequent decrease in tumor growth and dissemination is achieved.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: November 1, 2011
    Assignee: The Scripps Research Institute
    Inventors: Ralph A. Reisfeld, Andreas G. Niethammer, Rong Xiang
  • Patent number: 7833976
    Abstract: The invention provides methods for treating tumors and tumor metastases in a mammal comprising administering, to a mammal in need of treatment, a therapeutic amount of an antagonist sufficient to inhibit angiogenesis in combination with a therapeutic amount of anti-tumor immunotherapeutic agent, such as a anti-tumor antigen antibody/cytokine fusion protein having a cytokine and a recombinant immunoglobulin polypeptide chain sufficient to elicit a cytokine-specific biological response.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: November 16, 2010
    Assignees: The Scripps Research Institute, EMD Lexigen Research Center Corp.
    Inventors: Holger N. Lode, Ralph A. Reisfeld, David A. Cheresh, Stephen D. Gillies
  • Publication number: 20100136058
    Abstract: A DNA vaccine suitable for eliciting an immune response against cancer cells comprises a polynucleotide construct operably encoding an a Fra-1 protein, such as a polyubiquitinated human Fra-1 protein, and IL-18, such as human IL-18, in a pharmaceutically acceptable carrier. In a preferred embodiment, the polynucleotide construct is operably incorporated in an attenuated bacterial vector, such as an attenuated Salmonella typhimurium, particularly a doubly attenuated aroA- dam- S. typhimurium. Transformed host cells, methods of inhibiting tumor growth, of vaccinating a patient against cancer, and of delivering genetic material to a mammalian cell in vivo are also described.
    Type: Application
    Filed: August 4, 2009
    Publication date: June 3, 2010
    Inventors: Yunping Luo, Rong Xiang, Ralph A. Reisfeld
  • Publication number: 20100047164
    Abstract: Chondroition sulfate proteoglycans represent excellent targets for anti-tumor immunotherapy. Antibodies which target such proteoglycans can be used alone, in combinations, armed with a cytotoxic payload or unarmed. Combinations of such antibodies can target different epitopes of the proteoglycans. Internalization of the antibodies can increase the toxicity of the payloads. Single chain variable regions are especially advantageous for such anti-tumor immunotherapy.
    Type: Application
    Filed: April 6, 2009
    Publication date: February 25, 2010
    Applicants: DUKE UNIVERSITY, The United States Government as represented by the Secretary, Department of Health and Human Service, Scripps Clinic and Research Foundation
    Inventors: Darell Bigner, Chien-Tsun Kuan, Ira H. Pastan, Ralph Reisfeld
  • Publication number: 20090275642
    Abstract: The present invention provides a DNA composition comprising a DNA minigene construct that encodes for a polypeptide comprising a plurality of immunogenic fragments of a cysteine endopeptidase that is expressed in tumor-associated cells. The immunogenic fragments are joined together serially by a linker peptide between each successive fragment in the polypeptide. The polypeptide is capable of eliciting an immune response against the tumor-associated cells, is expressible in immune cells, and is incorporated in a pharmaceutically acceptable carrier.
    Type: Application
    Filed: October 5, 2007
    Publication date: November 5, 2009
    Inventors: Ralph A. Reisfeld, Rong Xiang, Yunping Luo
  • Publication number: 20090253778
    Abstract: A DNA composition effective for eliciting an immune response against tumor cells and tumor metastases comprising a DNA construct that encodes for at least one epitope of fibroblast activation protein (FAP), which is expressible in immune cells, and which is incorporated in a pharmaceutically acceptable carrier. The composition can encode a single epitope of FAP, a polypeptide comprising two or more epitopes of FAP, the entire FAP protein, or any portion thereof that will elicit the desired immune response. In one preferred embodiment, the composition also includes a DNA construct that encodes an immune effector protein, such as a cytokine. The DNA composition of the invention can be used alone or in combination with a chemotherapeutic agent to treat diseases such as tumors and tumor metastases.
    Type: Application
    Filed: June 21, 2007
    Publication date: October 8, 2009
    Inventors: Ralph A. Reisfeld, Markus Loeffler, Jorg A. Kruger, Andreas G. Niethammer
  • Patent number: 7569552
    Abstract: A DNA vaccine suitable for eliciting an immune response against cancer cells comprises a polynucleotide construct operably encoding an a Fra-1 protein, such as a polyubiquitinated human Fra-1 protein, and IL-18, such as human IL-18, in a pharmaceutically acceptable carrier. In a preferred embodiment, the polynucleotide construct is operably incorporated in an attenuated bacterial vector, such as an attenuated Salmonella typhimurium, particularly a doubly attenuated aroA? dam? S. typhimurium. Transformed host cells, methods of inhibiting tumor growth, of vaccinating a patient against cancer, and of delivering genetic material to a mammalian cell in vivo are also described.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: August 4, 2009
    Assignee: The Scripps Research Institute
    Inventors: Yunping Luo, Rong Xiang, Ralph A. Reisfeld