Patents by Inventor Ralph G. Nuzzo
Ralph G. Nuzzo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12074213Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.Type: GrantFiled: June 24, 2021Date of Patent: August 27, 2024Assignee: The Board of Trustees of the University of IllinoisInventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
-
Patent number: 11493818Abstract: An autonomous light management system for a window includes an electrochromic film stack comprising an electrochromic layer on a first transparent electrode, an ion storage layer on a second transparent electrode, and an electrolyte sandwiched between the ion storage and electrochromic layers. The electrochromic film stack exhibits a transmissive state or an absorptive state depending on charging or discharging of the electrochromic layer. The light management system further comprises an array of power units disposed on a front surface of the electrochromic film stack, where each power unit comprises at least one solar microcell. Collectively, the solar microcells cover an area no greater than about 6% of a total area of the front surface. The array of power units is configured to control the charging and discharging of the electrochromic layer, thereby manipulating light transmission through the electrochromic film stack.Type: GrantFiled: October 6, 2020Date of Patent: November 8, 2022Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISInventors: Mikayla A. Yoder, Marjorie M. Potter, Aaron Petronico, Sean E. Lehman, Ralph G. Nuzzo
-
Publication number: 20210343862Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.Type: ApplicationFiled: June 24, 2021Publication date: November 4, 2021Applicant: The Board of Trustees of the University of IllinoisInventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
-
Patent number: 11088268Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.Type: GrantFiled: June 21, 2019Date of Patent: August 10, 2021Assignee: The Board of Trustees of the University of IllinoisInventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
-
Publication number: 20210116768Abstract: An autonomous light management system for a window includes an electrochromic film stack comprising an electrochromic layer on a first transparent electrode, an ion storage layer on a second transparent electrode, and an electrolyte sandwiched between the ion storage and electrochromic layers. The electrochromic film stack exhibits a transmissive state or an absorptive state depending on charging or discharging of the electrochromic layer. The light management system further comprises an array of power units disposed on a front surface of the electrochromic film stack, where each power unit comprises at least one solar microcell. Collectively, the solar microcells cover an area no greater than about 6% of a total area of the front surface. The array of power units is configured to control the charging and discharging of the electrochromic layer, thereby manipulating light transmission through the electrochromic film stack.Type: ApplicationFiled: October 6, 2020Publication date: April 22, 2021Inventors: Mikayla A. Yoder, Marjorie M. Potter, Aaron Petronico, Sean E. Lehman, Ralph G. Nuzzo
-
Publication number: 20200006540Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.Type: ApplicationFiled: June 21, 2019Publication date: January 2, 2020Applicant: The Board of Trustees of the University of IllinoisInventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
-
Patent number: 10374072Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.Type: GrantFiled: June 30, 2017Date of Patent: August 6, 2019Assignee: The Board of Trustees of the University of IllinoisInventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
-
Patent number: 10355113Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.Type: GrantFiled: March 29, 2016Date of Patent: July 16, 2019Assignee: The Board of Trustees of the University of IllinoisInventors: John A. Rogers, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanqing Jiang, Yonggang Huang, Ralph G. Nuzzo, Zhengtao Zhu, Etienne Menard, Dahl-Young Khang
-
Patent number: 10073293Abstract: An optical microcavity for a high-contrast display comprises an enclosed cavity having a front wall and a back wall, where the front wall comprises a pinhole opening for emission of light from the cavity and the back wall is configured to generate or transmit light into the cavity. An outer surface of the front wall absorbs some or substantially all optical wavelengths of externally incident light so as to appear black or colored. An inner surface of the front wall comprises a light reflectivity of greater than 90% to promote photon recycling within the cavity and light emission through the pinhole opening.Type: GrantFiled: April 11, 2017Date of Patent: September 11, 2018Assignee: The Board of Trustees of the University of IllinoisInventors: Paul V. Braun, Osman S. Cifci, Eric S. Epstein, Hao Chen, Lu Xu, Ralph G. Nuzzo
-
Publication number: 20170309733Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.Type: ApplicationFiled: June 30, 2017Publication date: October 26, 2017Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
-
Publication number: 20170293169Abstract: An optical microcavity for a high-contrast display comprises an enclosed cavity having a front wall and a back wall, where the front wall comprises a pinhole opening for emission of light from the cavity and the back wall is configured to generate or transmit light into the cavity. An outer surface of the front wall absorbs some or substantially all optical wavelengths of externally incident light so as to appear black or colored. An inner surface of the front wall comprises a light reflectivity of greater than 90% to promote photon recycling within the cavity and light emission through the pinhole opening.Type: ApplicationFiled: April 11, 2017Publication date: October 12, 2017Inventors: Paul V. Braun, Osman S. Cifci, Eric S. Epstein, Hao Chen, Lu Xu, Ralph G. Nuzzo
-
Patent number: 9768086Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.Type: GrantFiled: March 29, 2016Date of Patent: September 19, 2017Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISInventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
-
Patent number: 9761444Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.Type: GrantFiled: March 29, 2016Date of Patent: September 12, 2017Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISInventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
-
Publication number: 20160381789Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.Type: ApplicationFiled: March 29, 2016Publication date: December 29, 2016Inventors: John A. ROGERS, Matthew MEITL, Yugang SUN, Heung Cho KO, Andrew CARLSON, Won Mook CHOI, Mark STOYKOVICH, Hanqing JIANG, Yonggang HUANG, Ralph G. NUZZO, Zhengtao ZHU, Etienne MENARD, Dahl-Young KHANG
-
Publication number: 20160293794Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.Type: ApplicationFiled: March 29, 2016Publication date: October 6, 2016Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
-
Publication number: 20160284544Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.Type: ApplicationFiled: March 29, 2016Publication date: September 29, 2016Inventors: Ralph G. NUZZO, John A. ROGERS, Etienne MENARD, Keon Jae LEE, Dahl-Young KHANG, Yugang SUN, Matthew MEITL, Zhengtao ZHU
-
Patent number: 9450043Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.Type: GrantFiled: January 14, 2014Date of Patent: September 20, 2016Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISInventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
-
Patent number: 9349900Abstract: Provided are methods for making a device or device component by providing a multi layer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.Type: GrantFiled: April 7, 2014Date of Patent: May 24, 2016Assignee: The Board of Trustees of the University of IllinoisInventors: John A. Rogers, Ralph G. Nuzzo, Matthew Meitl, Heung Cho Ko, Jongseung Yoon, Etienne Menard, Alfred J. Baca
-
Patent number: 9324733Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.Type: GrantFiled: March 20, 2014Date of Patent: April 26, 2016Assignee: The Board of Trustees of the University of IllinoisInventors: John A. Rogers, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanqing Jiang, Yonggang Huang, Ralph G. Nuzzo, Zhengtao Zhu, Etienne Menard, Dahl-Young Khang
-
Patent number: 9045657Abstract: A viscoelastic ink for direct writing of hydrogel structures includes a long chain polymer and a photopolymerizable moiety, which may be a photopolymerizable monomer or a photopolymerizable group attached to the long chain polymer. The ink may also include a crosslinking agent, a photoinitiator, and water. The long chain polymer is present at a concentration greater than a critical overlap concentration c* of the long chain polymer in the ink.Type: GrantFiled: March 22, 2011Date of Patent: June 2, 2015Assignee: The Board of Trustees of the University of IllinoisInventors: Jennifer A. Lewis, Robert F. Shepherd, Robert A. Barry, III, Sara T. Parker, Jennifer N. H. Shepherd, Pierre Wiltzius, Ralph G. Nuzzo