Patents by Inventor Ralph Sinkus

Ralph Sinkus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11921183
    Abstract: A magnetic resonance (MR) compatible transducer for magnetic resonance elastography applications has a cantilevered drive element a free end of which is arranged in use to move reciprocally, and a flexible non-conductive connection rod slidably disposed within a flexible non-conductive sleeve. The connection rod is affixed at a proximal end to the cantilevered drive element via a proximal flexible connection piece that in use accommodates the slight rotational movement of the cantilevered drive element as it reciprocates about its secured end, whilst translating the rotational reciprocation of the cantilevered drive element into a pure translational reciprocation of the connection rod within the sleeve. The distal end of the connection rod is affixed against a protrusion connected to another cantilevered driven element, upon which is mounted a piston element that in use contacts the subject.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: March 5, 2024
    Assignee: King's College London
    Inventors: Ralph Sinkus, Ondrej Holub, Simon Lambert, Rachel Clough
  • Publication number: 20240012077
    Abstract: The present disclosure is directed to a motor for a magnetic resonance (MR) tomography room, to a patient table for the MR room, to a MR elastography device, and to a MR tomography device. A MR tomography device for a MR elastography imaging protocol is arranged within the MR tomography room, and includes a rotational drive for supplying rotational energy to power a MR elastography transducer usable during the MR elastography imaging protocol, and a support structure. The rotational drive comprises a terminal for connecting the MR elastography transducer to the rotational drive, and a bearing means configured such that the position of the terminal relative to the support structure is adaptable along a trajectory predetermined by the bearing means. The rotational drive is mounted to the support structure via the bearing means.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 11, 2024
    Inventors: Giacomo Annio, Verena Müller-Reinwald, Ralph Sinkus, Omar Darwish, Wilfried Schnell, Tamara Elisabeth Falkner, Ahmed M. Gharib
  • Patent number: 11852704
    Abstract: The present disclosure is directed to a motor for a magnetic resonance (MR) tomography room, to a patient table for the MR room, to a MR elastography device, and to a MR tomography device. A MR tomography device for a MR elastography imaging protocol is arranged within the MR tomography room, and includes a rotational drive for supplying rotational energy to power a MR elastography transducer usable during the MR elastography imaging protocol, and a support structure. The rotational drive comprises a terminal for connecting the MR elastography transducer to the rotational drive, and a bearing means configured such that the position of the terminal relative to the support structure is adaptable along a trajectory predetermined by the bearing means. The rotational drive is mounted to the support structure via the bearing means.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: December 26, 2023
    Assignees: Siemens Healthcare GmbH, Centre National de la Recherche Scientifique (CNRS), Institut National de La Sante et de la Recherche Medicale (INSERM), King's College London, Department of Health and Human Services, UNIV PARIS XIII PARIS-NORD VILLETANEUSE, Universite de Paris
    Inventors: Giacomo Annio, Verena Muller-Reinwald, Ralph Sinkus, Omar Darwish, Wilfried Schnell, Tamara Elisabeth Falkner, Ahmed M. Gharib
  • Patent number: 11821972
    Abstract: The present disclosure is directed to techniques for synchronizing a rotational eccentric mass of a gravitational transducer used for a magnetic resonance elastography acquisition with a corresponding magnetic resonance elastography scan carried out by a magnetic resonance imaging system, wherein the rotation of the eccentric mass is driven by a shaft. The method includes starting the rotation of the eccentric mass at a set vibration frequency and the magnetic resonance elastography scan at a set acquisition frequency; determining the rotational position of the shaft; defining the rotational position as first reference position; calculating further reference positions. At the start time of each subsequent acquisition period, determining the current rotational position of the shaft; comparing the determined current rotational position with the theoretically expected reference position and decreasing or increasing the rotational speed of the rotational eccentric mass based on the comparison.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: November 21, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Omar Darwish, Radhouene Neji, Ahmed M. Gharib, Ralph Sinkus
  • Publication number: 20230347181
    Abstract: The present invention refers to a medical apparatus that allows to generate, non-invasively and at a requested depth shear waves of controlled frequency and amplitude. The purpose is to impact via mechanotransduction on cellular behavior, i.e. cell proliferation and cell migration. The aim is to aide classical tumor therapy for instance by rendering cells more receptive to drugs, or by gaining time during chemotherapy by reducing cell migration and hence slowing down the metastatic process.
    Type: Application
    Filed: August 16, 2021
    Publication date: November 2, 2023
    Inventors: Guillermo Rus Carlborg, Juan Antonio Marchal Corrales, Juan Soler Vizcaino, Juan Manuel Melchor Rodriguez, Antonio Manuel Callejas Zafra, Miguel Riveiro Taboada, Gema Jimenez Gonzalez, Ralph Sinkus
  • Publication number: 20230305090
    Abstract: The present disclosure is directed to techniques for synchronizing a rotational eccentric mass of a gravitational transducer used for a magnetic resonance elastography acquisition with a corresponding magnetic resonance elastography scan carried out by a magnetic resonance imaging system, wherein the rotation of the eccentric mass is driven by a shaft. The method includes starting the rotation of the eccentric mass at a set vibration frequency and the magnetic resonance elastography scan at a set acquisition frequency; determining the rotational position of the shaft; defining the rotational position as first reference position; calculating further reference positions. At the start time of each subsequent acquisition period, determining the current rotational position of the shaft; comparing the determined current rotational position with the theoretically expected reference position and decreasing or increasing the rotational speed of the rotational eccentric mass based on the comparison.
    Type: Application
    Filed: March 23, 2022
    Publication date: September 28, 2023
    Inventors: Omar Darwish, Radhouene Neji, Ahmed M. Gharib, Ralph Sinkus
  • Publication number: 20230296708
    Abstract: The present disclosure is directed to a motor for a magnetic resonance (MR) tomography room, to a patient table for the MR room, to a MR elastography device, and to a MR tomography device. A MR tomography device for a MR elastography imaging protocol is arranged within the MR tomography room, and includes a rotational drive for supplying rotational energy to power a MR elastography transducer usable during the MR elastography imaging protocol, and a support structure. The rotational drive comprises a terminal for connecting the MR elastography transducer to the rotational drive, and a bearing means configured such that the position of the terminal relative to the support structure is adaptable along a trajectory predetermined by the bearing means. The rotational drive is mounted to the support structure via the bearing means.
    Type: Application
    Filed: March 17, 2022
    Publication date: September 21, 2023
    Inventors: Giacomo Annio, Verena Muller-Reinwald, Ralph Sinkus, Omar Darwish, Wilfried Schnell, Tamara Elisabeth Falkner, Ahmed M. Gharib
  • Patent number: 11740312
    Abstract: A method and system for performing three-dimensional, 3D, magnetic resonance elastography, MRE, using a multi-slice gradient echo, GRE, imaging sequence. Four scans typically required to be performed during MRE, and during four breath-holds, are combined into a single measurement that can be performed during a single breath-hold.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: August 29, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Omar Darwish, Stephan Kannengießer, Ralph Sinkus, Radhouene Neji
  • Publication number: 20220317219
    Abstract: The present disclosure generally relate to a method and system for performing three-dimensional, 3D, magnetic resonance elastography, MRE. In particular, the present disclosure relates to a method and system for imaging an area of a patient using a multi-slice gradient echo, GRE, imaging sequence. Advantageously, the present techniques enable the four scans that are typically required to be performed during MRE, and during four breath-holds, to be combined into a single measurement that can be performed during a single breath-hold.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 6, 2022
    Inventors: Omar Darwish, Stephan Kannengiesser, Ralph Sinkus, Radhouene Neji
  • Publication number: 20180172789
    Abstract: Embodiments of the invention provide a magnetic resonance (MR) compatible transducer for magnetic resonance elastography applications having a cantilevered drive element (54) a free end of which is arranged in use to move reciprocally, and a flexible non-conductive connection rod (62) slidably disposed within a flexible non-conductive sleeve (60). The connection rod is affixed at a proximal end to the cantilevered drive element via a proximal flexible connection piece (64) that in use accommodates the slight rotational movement of the cantilevered drive element as it reciprocates about its secured end, whilst translating the rotational reciprocation of the cantilevered drive element into a pure translational reciprocation of the connection rod within the sleeve. The distal end of the connection rod is affixed against a protrusion connected to another cantilevered driven element (56), upon which is mounted a piston element (58) that in use contacts the subject.
    Type: Application
    Filed: February 25, 2016
    Publication date: June 21, 2018
    Inventors: Ralph Sinkus, Ondrej Holub, Simon Lambert, Rachel Clough
  • Patent number: 9952321
    Abstract: The inventive imaging method consists in generating a mechanical wave having shearing and compressional components in a viscoelastic medium and in determining the movement parameter of said viscoelastic medium at different points during the propagation of said mechanical wave. Said method comprises a correction stage when the movement parameter is processed for eliminating errors caused by the compressional component of the mechanical wave.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: April 24, 2018
    Assignees: Centre National de la Recherche Scientifique—CNRS, Universite Paris 7—Denis Diderot 2
    Inventors: Mathias Fink, Ralph Sinkus, Mickaël Tanter, Jeremy Bercoff
  • Publication number: 20130237807
    Abstract: A method and apparatus (100) for vibrating an organ and/or tissue and/or region of a subject's body (202) without a mechanical transmission to characterize at least one mechanical property of the region and/or tissue and/or organ, the apparatus (100) includes: elements (114-118) for generating a pressure wave of a given frequency in a gaseous medium, and waveguide elements (106) for guiding, in a gaseous medium, the pressure wave from the generating elements (114-118) to a human or animal body (202). Wave guiding in the airways of a human or animal body and tissue displacement mapping, anisotropy, and mechanical property characterizing systems (300) and methods are also described.
    Type: Application
    Filed: August 16, 2011
    Publication date: September 12, 2013
    Applicant: UNIVERSITE PARIS-SUD XI
    Inventors: Xavier Francois Maitre, Luc Darrasse, Ralph Sinkus, Charles Bruno Louis
  • Patent number: 8347692
    Abstract: Method for rheological characterization of a viscoelastic medium, with the following steps: (a) an excitation step during which a vibratory excitation is generated in the viscoelastic medium leading to a deformation of the medium, (b) a deformation measurement step during which the deformation of the medium caused by the excitation is observed, (c) and a characterization step during which at least one non-zero power parameter y is determined such that a rheological parameter of the medium x is equal to x(f)=a+b·fy, where f is the frequency, a is a real number and b a non-zero scale parameter. It is thus possible to obtain mapping of the power parameter y.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: January 8, 2013
    Assignee: Super Sonic Imagine
    Inventors: Ralph Sinkus, Michaël Tanter, Mathias Fink, Jeremy Bercoff, David Savery
  • Patent number: 8155725
    Abstract: The invention concerns a method for optimizing the focusing of waves in a zone of interest of a medium, with the waves being emitted by a network of sources to the medium through an aberration-inducing element that introduces an initially indeterminate phase shift. The method according to the invention proposes to use M?1 successive modifications of the emitted wave, each giving rise to a perturbation. According to the invention, the M perturbations are measured in the zone of interest at each modification of the phase and/or amplitude distributions, and these measurements are used to deduce optimal focusing characteristics to maximize the perturbation induced in the zone of interest.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: April 10, 2012
    Assignee: Super Sonic Imagine
    Inventors: Mathieu Pernot, Mathias Fink, Mickaël Tanter, Gabriel Montaldo, Jean-Francois Aubry, Ralph Sinkus
  • Publication number: 20120053450
    Abstract: The present invention relates to a method and apparatus for imaging the mechanical properties of the prostate of a patient non-invasively. The apparatus generally comprises a magnetic resonance scanner, a vibration assembly coupled to the perineal region of the patient, and a driver that drives the mechanical exciter. The method generally comprises positioning the vibration assembly against the perineal region of the patient, vibrating the mechanical exciter to cause deformational excitation of a tissue region contacted in the perineum, capturing a series of images in time (snapshots) of the tissue region using the MR scanner, and finally processing the displacement images to generate maps of mechanical properties of images tissue.
    Type: Application
    Filed: May 10, 2011
    Publication date: March 1, 2012
    Inventors: Septimiu Salcudean, Ramin S. Sahebjavaher, Ralph Sinkus
  • Publication number: 20100170342
    Abstract: Method for rheological characterization of a viscoelastic medium, comprising the following steps: (a) an excitation step during which a vibratory excitation is generated in the viscoelastic medium leading to a deformation of the medium, (b) a deformation measurement step during which the deformation of the medium caused by the excitation is observed, (c) and a characterization step during which at least one non-zero power parameter y is determined such that a rheological parameter of the medium x is equal to x (f)=a+b.fy, where f is the frequency, a is a real number and b a non-zero scale parameter. It is thus possible to obtain mapping of the power parameter y.
    Type: Application
    Filed: June 23, 2008
    Publication date: July 8, 2010
    Applicants: SUPER SONIC IMAGINE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - CNRS-
    Inventors: Ralph Sinkus, Mickaël Tanter, Matthias Fink, Jeremy Bercoff, David Savery
  • Publication number: 20090124901
    Abstract: The inventive imaging method consists in generating a mechanical wave having shearing and compressional components in a viscoelastic medium and in determining the movement parameter of said viscoelastic medium at different points during the propagation of said mechanical wave. Said method comprises a correction stage when the movement parameter is processed for eliminating errors caused by the compressional component of the mechanical wave.
    Type: Application
    Filed: March 30, 2006
    Publication date: May 14, 2009
    Inventors: Mathias Fink, Ralph Sinkus, Mickael Tanter, Jeremy Bercoff
  • Publication number: 20090093724
    Abstract: The invention concerns a method for optimizing the focusing of waves in a zone of interest of a medium, with the waves being emitted by a network of sources to the medium through an aberration-inducing element that introduces an initially indeterminate phase shift. The method according to the invention proposes to use M?1 successive modifications of the emitted wave, each giving rise to a perturbation. According to the invention, the M perturbations are measured in the zone of interest at each modification of the phase and/or amplitude distributions, and these measurements are used to deduce optimal focusing characteristics to maximize the perturbation induced in the zone of interest.
    Type: Application
    Filed: February 20, 2008
    Publication date: April 9, 2009
    Applicant: SUPER SONIC IMAGINE
    Inventors: Mathieu Pernot, Mathias Fink, Mickael Tanter, Gabriel Montaldo, Jean-Francois Aubry, Ralph Sinkus
  • Publication number: 20060258934
    Abstract: The invention relates to a magnetic resonance method for locating interventional devices, in particular in vivo, in which the interventional device bears a marking which in magnetic resonance images influences the measured signals or generates its own measured signals, where the measured signals are processed by means of a one-dimensional signal processing method in order to suppress noise and artefacts. This may in particular be the maximum entropy method, which can be further expanded by the use of model functions. These model functions are subtracted from the measured signals during the iterative method in order in this way to additionally improve the elimination of artefacts. As an alternative to the use of the maximum entropy method, the use of filters, in particular Wiener filters or bandpass filters, is also possible.
    Type: Application
    Filed: April 13, 2004
    Publication date: November 16, 2006
    Inventors: Michael Zenge, Steffen Weiss, Tobias Schaeffter, Ralph Sinkus
  • Patent number: 7025253
    Abstract: In a method of elastography, diagnostic performance is improved in that the variation in time of the excursion whereby a region responds to excitation by mechanical oscillations is analyzed and the non-linear distortions are measured. Such non-linear distortions are a measure of the non-linear elastic properties of the region and constitute a diagnostically relevant item of information.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: April 11, 2006
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Ralph Sinkus, Steffen Weiss