Patents by Inventor Ralph Sperschneider

Ralph Sperschneider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10096322
    Abstract: An audio decoder configured to produce an audio signal from a bitstream containing audio frames includes: a core band decoding module configured to derive a directly decoded core band audio signal from the bitstream; a bandwidth extension module configured to derive a parametrically de-coded bandwidth extension audio signal from the core band audio signal and from the bitstream, wherein the bandwidth extension audio signal is based on a frequency domain signal having at least one frequency band; and a combiner configured to combine the core band audio signal and the bandwidth extension audio signal so as to produce the audio signal; wherein the bandwidth extension module includes an energy adjusting module being configured in such way that in a current audio frame in which an audio frame loss occurs, an adjusted signal energy for the cur-rent audio frame for the at least one frequency band is set.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: October 9, 2018
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Jérémie Lecomte, Fabian Bauer, Ralph Sperschneider, Arthur Tritthart
  • Publication number: 20180268825
    Abstract: An apparatus for decoding an encoded audio signal to obtain a reconstructed audio signal is provided. The apparatus includes a receiving interface, a delay buffer and a sample processor for processing the selected audio signal samples to obtain reconstructed audio signal samples of the reconstructed audio signal. The sample selector is configured to select, if a current frame is received by the receiving interface and if the current frame being received by the receiving interface is not corrupted, the plurality of selected audio signal samples from the audio signal samples being stored in the delay buffer depending on a pitch lag information being included by the current frame.
    Type: Application
    Filed: May 23, 2018
    Publication date: September 20, 2018
    Inventors: Michael SCHNABEL, Goran MARKOVIC, Ralph SPERSCHNEIDER, Jérémie LECOMTE, Christian HELMRICH
  • Publication number: 20180261230
    Abstract: An apparatus for decoding an audio signal is provided, having a receiving interface, configured to receive a first frame having a first audio signal portion of the audio signal, and configured to receive a second frame having a second audio signal portion of the audio signal; a noise level tracing unit, wherein the noise level tracing unit is configured to determine noise level information depending on at least one of the first audio signal portion and the second audio signal portion; a first reconstruction unit for reconstructing, in a first reconstruction domain, a third audio signal portion of the audio signal depending on the noise level information; a transform unit for transforming the noise level information to a second reconstruction domain; and a second reconstruction unit for reconstructing, in the second reconstruction domain, a fourth audio signal portion of the audio signal depending on the noise level information.
    Type: Application
    Filed: May 15, 2018
    Publication date: September 13, 2018
    Inventors: Michael SCHNABEL, Goran MARKOVIC, Ralph SPERSCHNEIDER, Jérémie LECOMTE, Christian HELMRICH
  • Publication number: 20180233153
    Abstract: An apparatus for decoding an encoded audio signal to obtain a reconstructed audio signal includes a receiving interface for receiving one or more frames comprising information on a plurality of audio signal samples of an audio signal spectrum of the encoded audio signal, and a processor for generating the reconstructed audio signal. The processor is configured to generate the reconstructed audio signal by fading a modified spectrum to a target spectrum, if a current frame is not received by the receiving interface or if the current frame is received by the receiving interface but is corrupted, wherein the modified spectrum includes a plurality of modified signal samples, wherein, for each of the modified signal samples of the modified spectrum, an absolute value of the modified signal sample is equal to an absolute value of one of the audio signal samples of the audio signal spectrum.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 16, 2018
    Inventors: Michael SCHNABEL, Goran MARKOVIC, Ralph SPERSCHNEIDER, Jérémie LECOMTE, Christian HELMRICH
  • Patent number: 9997163
    Abstract: An apparatus for decoding an encoded audio signal to obtain a reconstructed audio signal is provided. The apparatus includes a receiving interface, a delay buffer and a sample processor for processing the selected audio signal samples to obtain reconstructed audio signal samples of the reconstructed audio signal. The sample selector is configured to select, if a current frame is received by the receiving interface and if the current frame being received by the receiving interface is not corrupted, the plurality of selected audio signal samples from the audio signal samples being stored in the delay buffer depending on a pitch lag information being included by the current frame.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: June 12, 2018
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Michael Schnabel, Goran Markovic, Ralph Sperschneider, Jeremie Lecomte, Christian Helmrich
  • Publication number: 20180151184
    Abstract: An apparatus for decoding an audio signal includes a receiving interface, wherein the receiving interface is configured to receive a first frame and a second frame. Moreover, the apparatus includes a noise level tracing unit for determining noise level information being represented in a tracing domain. Furthermore, the apparatus includes a first reconstruction unit for reconstructing a third audio signal portion of the audio signal depending on the noise level information and a second reconstruction unit for reconstructing a fourth audio signal portion depending on noise level information being represented in the second reconstruction domain.
    Type: Application
    Filed: January 24, 2018
    Publication date: May 31, 2018
    Inventors: Michael SCHNABEL, Goran MARKOVIC, Ralph SPERSCHNEIDER, Jeremie LECOMTE, Christian HELMRICH
  • Patent number: 9978376
    Abstract: An apparatus for decoding an encoded audio signal to obtain a reconstructed audio signal includes a receiving interface for receiving one or more frames comprising information on a plurality of audio signal samples of an audio signal spectrum of the encoded audio signal, and a processor for generating the reconstructed audio signal. The processor is configured to generate the reconstructed audio signal by fading a modified spectrum to a target spectrum, if a current frame is not received by the receiving interface or if the current frame is received by the receiving interface but is corrupted, wherein the modified spectrum includes a plurality of modified signal samples, wherein, for each of the modified signal samples of the modified spectrum, an absolute value of the modified signal sample is equal to an absolute value of one of the audio signal samples of the audio signal spectrum.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 22, 2018
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Michael Schnabel, Goran Markovic, Ralph Sperschneider, Jeremie Lecomte, Christian Helmrich
  • Patent number: 9978377
    Abstract: An apparatus for decoding an encoded audio signal to obtain a reconstructed audio signal is provided, having: a receiving interface for receiving one or more frames, a coefficient generator, and a signal reconstructor. The coefficient generator is configured to determine one or more first audio signal coefficients, and one or more noise coefficients. Moreover, the coefficient generator is configured to generate one or more second audio signal coefficients, depending on the one or more first audio signal coefficients and depending on the one or more noise coefficients.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 22, 2018
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Michael Schnabel, Goran Markovic, Ralph Sperschneider, Jeremie Lecomte, Christian Helmrich
  • Patent number: 9978378
    Abstract: An apparatus for decoding an audio signal is provided, having a receiving interface, configured to receive a first frame having a first audio signal portion of the audio signal, and configured to receive a second frame having a second audio signal portion of the audio signal; a noise level tracing unit, wherein the noise level tracing unit is configured to determine noise level information depending on at least one of the first audio signal portion and the second audio signal portion; a first reconstruction unit for reconstructing, in a first reconstruction domain, a third audio signal portion of the audio signal depending on the noise level information; a transform unit for transforming the noise level information to a second reconstruction domain; and a second reconstruction unit for reconstructing, in the second reconstruction domain, a fourth audio signal portion of the audio signal depending on the noise level information.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: May 22, 2018
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Michael Schnabel, Goran Markovic, Ralph Sperschneider, Jérémie Lecomte, Christian Helmrich
  • Publication number: 20180108361
    Abstract: An approach is described that obtains spectrum coefficients for a replacement frame of an audio signal. A tonal component of a spectrum of an audio signal is detected based on a peak that exists in the spectra of frames preceding a replacement frame. For the tonal component of the spectrum a spectrum coefficients for the peak and its surrounding in the spectrum of the replacement frame is predicted, and for the non-tonal component of the spectrum a non-predicted spectrum coefficient for the replacement frame or a corresponding spectrum coefficient of a frame preceding the replacement frame is used.
    Type: Application
    Filed: December 15, 2017
    Publication date: April 19, 2018
    Inventors: Janine Sukowski, Ralph Sperschneider, Goran Markovic, Wolfgang Jaegers, Christian Helmrich, Bernd Edler, Ralf Geiger
  • Patent number: 9916833
    Abstract: An apparatus for decoding an audio signal includes a receiving interface, wherein the receiving interface is configured to receive a first frame and a second frame. Moreover, the apparatus includes a noise level tracing unit for determining noise level information being represented in a tracing domain. Furthermore, the apparatus includes a first reconstruction unit for reconstructing a third audio signal portion of the audio signal depending on the noise level information and a second reconstruction unit for reconstructing a fourth audio signal portion depending on noise level information being represented in the second reconstruction domain.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: March 13, 2018
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Michael Schnabel, Goran Markovic, Ralph Sperschneider, Jeremie Lecomte, Christian Helmrich
  • Patent number: 9916834
    Abstract: An approach is described that obtains spectrum coefficients for a replacement frame of an audio signal. A tonal component of a spectrum of an audio signal is detected based on a peak that exists in the spectra of frames preceding a replacement frame. For the tonal component of the spectrum a spectrum coefficients for the peak and its surrounding in the spectrum of the replacement frame is predicted, and for the non-tonal component of the spectrum a non-predicted spectrum coefficient for the replacement frame or a corresponding spectrum coefficient of a frame preceding the replacement frame is used.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: March 13, 2018
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Janine Sukowski, Ralph Sperschneider, Goran Markovic, Wolfgang Jaegers, Christian Helmrich, Bernd Edler, Ralf Geiger
  • Publication number: 20170004834
    Abstract: An apparatus for generating an error concealment signal, includes: an LPC representation generator for generating a replacement LPC representation; an LPC synthesizer for filtering a codebook information using the replacement LPC representation; and a noise estimator for estimating a noise estimate during a reception of good audio frames, wherein the noise estimate depends on the good audio frames representation generator is configured to use the noise estimate estimated by the noise estimator in generating the replacement LPC representation.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Michael SCHNABEL, Jeremie LECOMTE, Ralph SPERSCHNEIDER, Manuel JANDER
  • Publication number: 20170004835
    Abstract: An apparatus for generating an error concealment signal, includes: an LPC representation generator for generating a replacement LPC representation; a gain calculator for calculating a gain information from the LPC representations; a compensator for compensating a gain influence of the replacement LPC representation using the gain information; and an LPC synthesizer for filtering codebook information using the replacement LPC representation to obtain the error concealment signal, wherein the compensator is configured for weighting the codebook information or an LPC synthesis output signal.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Michael SCHNABEL, Jeremie LECOMTE, Ralph SPERSCHNEIDER, Manuel JANDER
  • Publication number: 20170004833
    Abstract: An apparatus for generating an error concealment signal includes an LPC (linear prediction coding) representation generator for generating a first replacement LPC representation and a different second replacement LPC representation; an LPC synthesizer for filtering a first codebook information using the first replacement representation to obtain a first replacement signal and for filtering a different second codebook information using the second replacement LPC representation to obtain a second replacement signal; and a replacement signal combiner for combining the first replacement signal and the second replacement signal to obtain the error concealment signal.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Michael SCHNABEL, Jeremie LECOMTE, Ralph SPERSCHNEIDER, Manuel JANDER
  • Patent number: 9384739
    Abstract: An apparatus for generating spectral replacement values for an audio signal has a buffer unit for storing previous spectral values relating to a previously received error-free audio frame. Moreover, the apparatus includes a concealment frame generator for generating the spectral replacement values, when a current audio frame has not been received or is erroneous. The previously received error-free audio frame has filter information, the filter information having associated a filter stability value indicating a stability of a prediction filter. The concealment frame generator is adapted to generate the spectral replacement values based on the previous spectral values and based on the filter stability value.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: July 5, 2016
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Technische Universitaet Ilmenau
    Inventors: Jeremie Lecomte, Martin Dietz, Michael Schnabel, Ralph Sperschneider
  • Publication number: 20160180854
    Abstract: An audio decoder configured to produce an audio signal from a bitstream containing audio frames includes: a core band decoding module configured to derive a directly decoded core band audio signal from the bitstream; a bandwidth extension module configured to derive a parametrically de-coded bandwidth extension audio signal from the core band audio signal and from the bitstream, wherein the bandwidth extension audio signal is based on a frequency domain signal having at least one frequency band; and a combiner configured to combine the core band audio signal and the bandwidth extension audio signal so as to produce the audio signal; wherein the bandwidth extension module includes an energy adjusting module being configured in such way that in a current audio frame in which an audio frame loss occurs, an adjusted signal energy for the cur-rent audio frame for the at least one frequency band is set.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 23, 2016
    Inventors: Jeremie LECOMTE, Fabian BAUER, Ralph SPERSCHNEIDER, Arthur TRITTHART
  • Patent number: 9324332
    Abstract: A method for providing information on the validity of encoded audio data is disclosed, the encoded audio data being a series of coded audio data units. Each coded audio data unit can include information on the valid audio data. The method includes: providing either information on a coded audio data level which describes the amount of data at the beginning of an audio data unit being invalid, or providing information on a coded audio data level which describes the amount of data at the end of an audio data unit being invalid, or providing information on a coded audio data level which describes both the amount of data at the beginning and the end of an audio data unit being invalid. A method for receiving encoded data including information on the validity of data and providing decoded output data is also disclosed. Furthermore, a corresponding encoder and a corresponding decoder are disclosed.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: April 26, 2016
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN
    Inventors: Stefan Doehla, Ralph Sperschneider
  • Publication number: 20160111095
    Abstract: An apparatus for decoding an audio signal is provided, having a receiving interface, configured to receive a first frame having a first audio signal portion of the audio signal, and configured to receive a second frame having a second audio signal portion of the audio signal; a noise level tracing unit, wherein the noise level tracing unit is configured to determine noise level information depending on at least one of the first audio signal portion and the second audio signal portion; a first reconstruction unit for reconstructing, in a first reconstruction domain, a third audio signal portion of the audio signal depending on the noise level information; a transform unit for transforming the noise level information to a second reconstruction domain; and a second reconstruction unit for reconstructing, in the second reconstruction domain, a fourth audio signal portion of the audio signal depending on the noise level information.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Michael SCHNABEL, Markovic GORAN, Ralph SPERSCHNEIDER, Jeremie LECOMTE, Christian HELMRICH
  • Publication number: 20160104489
    Abstract: An apparatus for decoding an encoded audio signal to obtain a reconstructed audio signal is provided. The apparatus includes a receiving interface, a delay buffer and a sample processor for processing the selected audio signal samples to obtain reconstructed audio signal samples of the reconstructed audio signal. The sample selector is configured to select, if a current frame is received by the receiving interface and if the current frame being received by the receiving interface is not corrupted, the plurality of selected audio signal samples from the audio signal samples being stored in the delay buffer depending on a pitch lag information being included by the current frame.
    Type: Application
    Filed: December 18, 2015
    Publication date: April 14, 2016
    Inventors: Michael SCHNABEL, Goran MARKOVIC, Ralph SPERSCHNEIDER, Jeremie LECOMTE, Christian HELMRICH