Patents by Inventor Ralph Spickermann

Ralph Spickermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134020
    Abstract: Various technologies described herein pertain to mitigating motion misalignment of a time-of-flight sensor system and/or generating transverse velocity estimate data utilizing the time-of-flight sensor system. A stream of frames outputted by a sensor of the time-of-flight sensor system is received. A pair of non-adjacent frames in the stream of frames is identified. Computed optical flow data is calculated based on the pair of non-adjacent frames in the stream of frames. Estimated optical flow data for at least one differing frame can be generated based on the computed optical flow data, and the at least one differing frame can be realigned based on the estimated optical flow data. Moreover, transverse velocity estimate data for an object can be generated based on the computed optical flow data.
    Type: Application
    Filed: October 19, 2022
    Publication date: April 25, 2024
    Inventors: Glenn Sweeney, Zhanping Xu, Brandon Seilhan, Ryan Suess, Alexander Lesnick, Kartheek Chandu, Ralph Spickermann
  • Publication number: 20240134021
    Abstract: Various technologies described herein pertain to mitigating motion misalignment of a time-of-flight sensor system and/or generating transverse velocity estimate data utilizing the time-of-flight sensor system. A stream of frames outputted by a sensor of the time-of-flight sensor system is received. A pair of non-adjacent frames in the stream of frames is identified. Computed optical flow data is calculated based on the pair of non-adjacent frames in the stream of frames. Estimated optical flow data for at least one differing frame can be generated based on the computed optical flow data, and the at least one differing frame can be realigned based on the estimated optical flow data. Moreover, transverse velocity estimate data for an object can be generated based on the computed optical flow data.
    Type: Application
    Filed: October 27, 2022
    Publication date: April 25, 2024
    Inventors: Glenn Sweeney, Zhanping Xu, Brandon Seilhan, Ryan Suess, Alexander Lesnick, Kartheek Chandu, Ralph Spickermann
  • Patent number: 11455710
    Abstract: A device and method of object detection in a scene by combining traditional 2D visual light imaging such as pixels with 3D data such as a voxel map are described. A single lens directs image light from the scene to a dichroic mirror which then provides light to a both a 2D visible light image sensor and a 3D sensor, such as a time-of-flight sensor that uses a transmitted, modulated IR light beam, which is then synchronously demodulated to determine time of flight as well as 2D coordinates. 2D portions (non-distance) of 3D voxel image data are aligned with the 2D pixel image data such that each is responsive to the same portion of the scene. Embodiments determine true reflectivity, true scale, and image occlusion. 2D images may be enhanced by the 3D true reflectivity. Combined data may be used as training data for object detection and recognition.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: September 27, 2022
    Assignee: Oyla, Inc.
    Inventors: Ralph Spickermann, Raghavendra Singh, Srinath Kalluri
  • Patent number: 11366230
    Abstract: An optical device creates 3D images comprising a field of points, each point comprising horizontal, vertical, and distance metrics. The device comprises an illumination subsystem, comprising light sources, such as LEDs, a non-resonant beam steering element such as a micro-electro-mechanical system (MEMs) mirror, beam-shaping optics, a beam director plate, and a diffuser. The device also comprises an imaging subsystem with one or more optical detector chips that measure time-of-flight (TOF). Devices may dynamically and sequentially images solid-angle sub-regions of interest, in an arbitrary order, out of a total FOV, using eye-safe illumination. The corresponding received image portions are stitched together. The beam steering element is non-resonant, allowing arbitrary and rapid changes to its pointing vector. Beam shaping optics generates rectangular solid-angle illumination. One detector chip integrates light from one sub-region while another chip is reads out image data.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: June 21, 2022
    Inventors: Ralph Spickermann, Srinath Kalluri, Siddharth Jain
  • Publication number: 20210334944
    Abstract: A device and method of object detection in a scene by combining traditional 2D visual light imaging such as pixels with 3D data such as a voxel map are described. A single lens directs image light from the scene to a dichroic mirror which then provides light to a both a 2D visible light image sensor and a 3D sensor, such as a time-of-flight sensor that uses a transmitted, modulated IR light beam, which is then synchronously demodulated to determine time of flight as well as 2D coordinates. 2D portions (non-distance) of 3D voxel image data are aligned with the 2D pixel image data such that each is responsive to the same portion of the scene. Embodiments determine true reflectivity, true scale, and image occlusion. 2D images may be enhanced by the 3D true reflectivity. Combined data may be used as training data for object detection and recognition.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 28, 2021
    Applicant: Oyla, Inc.
    Inventors: Ralph Spickermann, Raghavendra Singh, Srinath Kalluri
  • Publication number: 20210325540
    Abstract: An optical device creates 3D images comprising a field of points, each point comprising horizontal, vertical, and distance metrics. The device comprises an illumination subsystem, comprising light sources, such as LEDs, a non-resonant beam steering element such as a micro-electro-mechanical system (MEMS) mirror, beam-shaping optics, a beam director plate, and a diffuser. The device also comprises an imaging subsystem with one or more optical detector chips that measure time-of-flight (TOF). Devices may dynamically and sequentially images solid-angle sub-regions of interest, in an arbitrary order, out of a total FOV, using eye-safe illumination. The corresponding received image portions are stitched together. The beam steering element is non-resonant, allowing arbitrary and rapid changes to its pointing vector. Beam shaping optics generates rectangular solid-angle illumination. One detector chip integrates light from one sub-region while another chip is reads out image data.
    Type: Application
    Filed: May 30, 2019
    Publication date: October 21, 2021
    Applicant: OYLA, INC
    Inventors: Ralph SPICKERMANN, Srinath KALLURI, Siddharth JAIN
  • Patent number: 10268044
    Abstract: Embodiments relate to an immersive viewer system and viewer housing. The system comprises a viewer housing having first and second viewing apertures and a device holder. The system includes a first set of Fresnel lenses in-line with the first viewing aperture and a second set of Fresnel lenses in-line with the second viewing aperture. The system may include a computing device having a generally rectangular profile with a narrow depth configured to be supported in the device holder such that a display screen of the computing device is directly viewable through the first and second viewing apertures. The first set and second set of Fresnel lenses bend a two-dimensional (2D) image displayed by the display screen to fully cover 180 degrees of a human field-of-view. The first and second sets of Fresnel lenses are configured to cause the 2D image to appear as a three-dimensional (3D) image.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: April 23, 2019
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Ralph Spickermann, John Schooley Camp, David Alan Smith, Dragos Bogdan Maciuca
  • Publication number: 20190041519
    Abstract: An optical device creates a 3D image of a volume of interest comprising horizontal, vertical, and distance information for each voxel. An illumination beam director and an imaging beam director are synchronized to each point to a selected, arbitrary, dynamically selectable reduced field of view, within a total field of view. Each reduced field of view is illuminated at once by a modulated continuous wave light source; and is imaged at once, using a pixel-array image sensor comprising time-of-flight for each of at least 8,000 pixels. The device sequences through 4 to 600 reduced fields of view until the total field of view is imaged. The device is free of rotating mechanical components. The pixel-array image sensor demodulates synchronously with the light source. Modulation frequency and sensor integration time are dynamically adjusted responsive to a desired volume of interest or field of view.
    Type: Application
    Filed: August 3, 2018
    Publication date: February 7, 2019
    Applicant: Oyla Inc.
    Inventors: Ralph Spickermann, Srinath Kalluri
  • Publication number: 20190041518
    Abstract: An optical device creates a 3D image of a volume of interest comprising horizontal, vertical, and distance information for each voxel. Two pairs of two Risley prisms rotate synchronously to first create outgoing modulated illumination beams, and second to direct incoming light to an image sensor. Synchronization allows the imaging portion of the system to look at the same field of view as is illuminated. This field of view is smaller than the volume of interest. The field of view is scanned both horizontal and vertically to encompass the volume of interest, and may by directed to any arbitrary field of view. The illumination beam is amplitude modulated. The image sensor demodulates synchronously, computing time-of-flight for each pixel. Modulation frequency and sensor integration time are dynamically adjusted responsive to a desired volume of interest or field of view.
    Type: Application
    Filed: August 3, 2018
    Publication date: February 7, 2019
    Applicant: Oyla Inc.
    Inventors: Ralph Spickermann, Srinath Kalluri
  • Patent number: 9298000
    Abstract: Aspects of the disclosure provide an apparatus. The apparatus includes a mirror module having a plurality of individually controllable mirror segments to reflect an incident beam having a variable incidence angle, and a controller configured to determine deflection profiles of the individually controllable mirror segments, and provide control signals to the individually-controllable mirror segments to adjust the deflection profiles, such that the individually controllable mirror segments collectively reflect the incident beam in a predetermined direction.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: March 29, 2016
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Ralph Spickermann, Daniel A Tauber
  • Patent number: 8997678
    Abstract: An underwater load-carrier is disclosed that includes an underwater-balloon detachably attached to a container that is loaded with ballast. The underwater load-carrier is lowered into the water of an ocean and allowed to descend to the ocean bottom and there connected a mining-vehicle. The mining-vehicle loads mined nodules into the container while the container ejects ballast to maintain the container at a specified altitude above the ocean bottom. When nodule loading is complete, nodules and/or ballast is ejected to allow underwater load-carrier to rise to the ocean surface where mined nodules is unloaded from the container.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: April 7, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Ralph Spickermann, Steve N. Persall
  • Publication number: 20140021329
    Abstract: Aspects of the disclosure provide an apparatus. The apparatus includes a mirror module having a plurality of individually controllable mirror segments to reflect an incident beam having a variable incidence angle, and a controller configured to determine deflection profiles of the individually controllable mirror segments, and provide control signals to the individually-controllable mirror segments to adjust the deflection profiles, such that the individually controllable mirror segments collectively reflect the incident beam in a predetermined direction.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 23, 2014
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Ralph SPICKERMANN, Daniel A. TAUBER
  • Publication number: 20130206049
    Abstract: An underwater load-carrier is disclosed that includes an underwater-balloon detachably attached to a container that is loaded with ballast. The underwater load-carrier is lowered into the water of an ocean and allowed to descend to the ocean bottom and there connected a mining-vehicle. The mining-vehicle loads mined nodules into the container while the container ejects ballast to maintain the container at a specified altitude above the ocean bottom. When nodule loading is complete, nodules and/or ballast is ejected to allow underwater load-carrier to rise to the ocean surface where mined nodules is unloaded from the container.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Ralph SPICKERMANN, Steve N. PERSALL
  • Patent number: 7260329
    Abstract: Optical apparatus that uses optically-actuated optical switches in conjunction with an optical codeword addressing scheme to provide for time division multiplexing and demultiplexing of high data rate optical data. Optical codewords traveling simultaneously with the data on a separate wavelength, in conjunction with the optical switches, enable all-optical multiplexing and demultiplexing. The present invention can also switch packets of data while keeping the data entirely in the optical domain, and no optical to electrical conversions are necessary.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: August 21, 2007
    Assignee: Lockheed Martin Corporation
    Inventors: Thomas C. Fall, Ralph Spickermann, Daniel A. Tauber
  • Patent number: 7085500
    Abstract: A transmitter comprising a programmable optical vector modulator and method for coherent optical signal communication. The transmitter includes a transmitter laser whose output is coupled by way of an optical fiber to an amplitude modulator. The output of the amplitude modulator is coupled by way of a length of optical fiber to a phase modulator. The phase modulator generates a modulated light output from the transmitter. Amplitude modulation is achieved by inputting data and a data clock signal to amplitude symbol mapping logic whose outputs are selectively weighted, summed, amplified and input to the amplitude modulator to amplitude modulate the output of the transmitter laser.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: August 1, 2006
    Assignee: Lockheed Martin Corp.
    Inventor: Ralph Spickermann
  • Patent number: 6963677
    Abstract: An all-optical, asynchronous binary storage cell implemented by optically induced total internal reflection cross-junction waveguide switches. The term “all-optical” refers to directing of optical data signals as a result of optical control signal inputs without the need for conversion between optical and electrical domains. The binary cell is a building block for a programmable all-optical random access memory (AORAM) device. The AORAM device enables circuits and networks that require optical buffers.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: November 8, 2005
    Assignee: Lockheed Martin Corp.
    Inventors: Ralph Spickermann, Steven R. Sakamoto
  • Patent number: 6847741
    Abstract: Optical apparatus and optical switching methods that provide optical high data rate switching at a wavelength or packet level using optical tone addressing. Optical signal routing is a result of optically induced total internal reflection at the intersection of an X-junction waveguide structure. The total internal reflection effect is controlled by a high intensity optical pump beam separate from the optical data signal. Total internal reflection may result from a free-carrier induced change in refractive index, which is a nonlinear effect found in common III-V semiconductors and selected polymers. Optical switching networks may be formed using cascaded pluralities of optical waveguide switches.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: January 25, 2005
    Assignee: Lockheed Martin Corp
    Inventors: Steven R. Sakamoto, Ralph Spickermann
  • Publication number: 20040141748
    Abstract: Fiber-to-the-home communication systems and methods that use coarse wavelength-division-multiplexed (WDM) channels for upstream data traffic to increase the dedicated upstream data rate for each subscriber to greater than 10 Megabit/sec. Data for upstream transmission from the subscriber to a first location (central office) quadrature amplitude/phase shift key modulates a unique microwave carrier frequency. The modulated carrier frequency containing the upstream data intensity modulates the optical output of a laser operating at a unique optical wavelength. The subscriber optical signals at the second locations are combined and optically transmitted to a photodetector at the first location. The photodetector produces a composite microwave spectrum including all subscriber quadrature amplitude/phase shift keyed data spectra and low and high frequency inter-subscriber cross products.
    Type: Application
    Filed: January 22, 2003
    Publication date: July 22, 2004
    Inventors: Ralph Spickermann, Steven R. Sakamoto, Masuma Ahmed
  • Publication number: 20040066999
    Abstract: Optical apparatus and optical switching methods that provide optical high data rate switching at a wavelength or packet level using optical tone addressing. Optical signal routing is a result of optically induced total internal reflection at the intersection of an X-junction waveguide structure. The total internal reflection effect is controlled by a high intensity optical pump beam separate from the optical data signal. Total internal reflection may result from a free-carrier induced change in refractive index, which is a nonlinear effect found in common III-V semiconductors and selected polymers. Optical switching networks may be formed using cascaded pluralities of optical waveguide switches.
    Type: Application
    Filed: October 4, 2002
    Publication date: April 8, 2004
    Inventors: Steven R. Sakamoto, Ralph Spickermann
  • Patent number: 6590683
    Abstract: Systems and methods that increase the data transmission rate through a given length of optical fiber, or increase the distortion-limited distance for an optical fiber link at a given data rate using band efficient modulation. This is achieved by modulating data for transmission onto a carrier signal. The modulated signal is predistorted and an optical carrier is amplitude modulated using the predistorted signal. The amplitude modulated optical carrier is transmitted over the optical fiber link. The original modulated microwave signal is reproduced at a receiver. The original signal is demodulated to generate the originally transmitted data. In addition, to reduce the bandwidth required by the modulated carrier, it may be single-sideband modulated. By increasing the number of bits per symbol and keeping the symbol rate constant, the data rate for a given length of optical fiber may be increased using the present invention without introducing additional distortion in the fiber.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: July 8, 2003
    Assignee: Lockheed Martin Corporation
    Inventor: Ralph Spickermann