Patents by Inventor Ralph Wilhelm
Ralph Wilhelm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12263032Abstract: An apparatus and method for estimating one or more hemodynamic parameters such as cardiac output or stroke volume. Embodiments are based on the concept of incorporating information about vascular tone into hemodynamic parameter estimation to improve accuracy. More particularly, embodiments use a measurement of a time duration for a blood pulse to travel from the heart along a certain length of an arterial path as a proxy measure for vascular tone, and incorporate this into hemodynamic parameter estimation. Embodiments are also based on incorporating vascular tone proxy measurements for multiple different arterial paths to take account of vascular tone variations between different portions of the circulatory system.Type: GrantFiled: June 11, 2021Date of Patent: April 1, 2025Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Rohan Joshi, Ralph Wilhelm Christianus Gemma Rosa Wijshoff
-
Publication number: 20240351482Abstract: A method of calibrating an in-vehicle inductive sensing apparatus to the dimensions and/or posture of a user seated in the vehicle. An array of inductive sensing coils is mounted in a fixed position relative to a geometry of the seat in which the user is received. From the spatial pattern or distribution of inductive sensing signals, it is determined which subset of coils is positioned most appropriately, e.g. which is closest, to an anatomical body of interest. A biological measurement pertaining to the anatomical body of interest is computed using data from only the selected subset of coils.Type: ApplicationFiled: August 15, 2022Publication date: October 24, 2024Inventors: Tim Patrick Steunebrink, Ralph Wilhelm Christianus Gemma Wijshoff
-
Patent number: 12097166Abstract: There is provided an apparatus (12) for use in measuring blood pressure. The apparatus (12) comprises a processor (102) configured to acquire a signal indicative of pressure oscillations detected inside a cuff inflated to pressurize a measurement site of a subject undergoing cardiopulmonary resuscitation. The pressure oscillations detected inside the cuff are indicative of a pulse of the subject. The processor (102) is also configured to trigger a blood pressure measurement for the subject based on the pressure oscillations detected inside the cuff.Type: GrantFiled: February 5, 2020Date of Patent: September 24, 2024Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Maarten Petrus Joseph Kuenen, Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Jens Muehlsteff
-
Publication number: 20240138764Abstract: A device is for measuring a body parameter for a subject. The device comprises a sensor for measuring the body parameter, a housing element for positioning the sensor on a body part of the subject and an actuator system within the housing element for applying a pressure to the body part. The actuator system comprises two states, a first state based on the actuator system applying a first pressure to a first area of the body part and a second state based on the actuator system applying a second pressure to a second area of the body part. The device also comprises a controller configured to apply the first and second states at different times.Type: ApplicationFiled: March 2, 2022Publication date: May 2, 2024Inventors: EDUARD GERARD MARIE PELSSERS, HANS WILLEM VAN KESTEREN, JENS MUEHLSTEFF, RALPH WILHELM CHRISTIANUS GEMMA ROSA WIJSHOFF, ANTHONIUS PETRUS GERARDUS EMANUELS JANSSEN
-
Patent number: 11957454Abstract: The present invention relates to a device, system and method for detection of pulse and/or pulse-related information of a patient.Type: GrantFiled: June 22, 2018Date of Patent: April 16, 2024Assignee: Koninklijke Philips N.V.Inventors: Kiran Hamilton J. Dellimore, Jens Muehlsteff, Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Lars Schmitt
-
Patent number: 11931134Abstract: The present invention relates to a device, system and method for improved non-invasive and objective detection of pulse of a subject. The device comprises an input unit (2a) configured to obtain a series of images of a skin region of the subject and a processing unit (2b) for processing said series of images by detecting pulse-related motion of the skin within the skin region from the series of images, generating a motion map of the skin region from the detected pulse-related motion, comparing the generated motion map with an expected motion map of the skin region, and determining the presence of pulse within the skin region based on the comparison.Type: GrantFiled: July 23, 2019Date of Patent: March 19, 2024Assignee: Koninklijke Philips N.V.Inventors: Kiran Hamilton J. Dellimore, Mukul Julius Rocque, Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Jens Muehlsteff
-
Publication number: 20240080594Abstract: A speaker can have a main body with a generally spheroidal shape, which can be supported standing on its end. The speaker can include a subwoofer that faces forward. A plurality of mid-range drivers can be distributed around the sub-woofer, facing generally forward and radially outward. A plurality of tweeters can be distributed around the sub-woofer, facing generally forward and generally outward. The outer housing portion of the speaker can be covered with a fabric material. A user interface ring 162 can be touch sensitive to receive input, and can have a plurality of lights that can be illuminated separately to convey information to the user.Type: ApplicationFiled: July 5, 2023Publication date: March 7, 2024Inventors: Timothy David Williamson, Peter Joseph Hamblin, Maximilian Vincent Wozniak, Robert James Wilson, Wilson E. Taylor, JR., Larry E. Hand, Mark Robert Westcott, Mark Edward Trainer, Ellie Rei Fukuda, Joel Robert Sietsema, Paul Michael Belanger, Matthew Patrick Lyons, Timothy Steven DeYoung, Werner Kirchmann, Ralph Wilhelm Hermann
-
Publication number: 20240024194Abstract: According to an aspect, there is provided a system for providing cardiopulmonary resuscitation (CPR) decision support, the system comprising: a photoplethysmography (PPG) sensing unit configured to determine one or more PPG signals at a measurement site on a subject; a core unit comprising a user interface; a motion sensing unit configured to detect motions correlated to chest compressions during compression therapy on the subject; and a processing unit configured to: determine presence or absence of a spontaneous pulse based on the detected motions correlated to chest compressions during compression therapy on the subject and the one or more PPG signals; determine a recommendation to be provided based on the determination of presence or absence of a spontaneous pulse, wherein the recommendation is associated with CPR decision support; and control the user interface to output the determined recommendation.Type: ApplicationFiled: December 10, 2021Publication date: January 25, 2024Inventors: Jens Muehlsteff, Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Jakob van de Laar, Hugo Veenstra, Anthonius Petrus Gerardus Emanuel Janssen
-
Publication number: 20230210492Abstract: An apparatus and method for estimating one or more hemodynamic parameters such as cardiac output or stroke volume. Embodiments are based on the concept of incorporating information about vascular tone into hemodynamic parameter estimation to improve accuracy. More particularly, embodiments use a measurement of a time duration for a blood pulse to travel from the heart along a certain length of an arterial path as a proxy measure for vascular tone, and incorporate this into hemodynamic parameter estimation. Embodiments are also based on incorporating vascular tone proxy measurements for multiple different arterial paths to take account of vascular tone variations between different portions of the circulatory system.Type: ApplicationFiled: June 11, 2021Publication date: July 6, 2023Inventors: ROHAN JOSHI, RALPH WILHELM CHRISTIANUS GEMMA ROSA WIJSHOFF
-
Patent number: 11412989Abstract: The present invention relates to a sensor device and method for obtaining physiological information of a subject. The sensor device comprises a PPG sensor (20), a motion sensor (30) and a device (10) for obtaining physiological information of the subject. The device comprises a processing unit (13) for generating an output signal carrying physiological information by (i) modulating the motion reference signal on a carrier signal of the first set of carrier signals or on a second carrier signal orthogonal to the first set of carrier signals to obtain a modulated signal and combining the modulated signal with the modulated PPG signals to obtain the output signal or (ii) demodulating the modulated PPG signals, performing artifact-reduction on the demodulated PPG signals using the motion reference signal to obtain artifact-reduced PPG signals and modulating the artifact-reduced PPG signals on the first set of carrier signals to obtain the output signal.Type: GrantFiled: January 2, 2018Date of Patent: August 16, 2022Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Jens Muehlsteff, Olaf Such
-
Patent number: 11406562Abstract: A device, system, and method to control activation of oxygen saturation (SpO2) measurements in a cardio-pulmonary resuscitation (CPR) procedure. When compressions are present, only a PPG-based pulse detection algorithm is performed. When a spontaneous pulse has been detected and compressions are not detected during a predetermined time period, both a PPG-based pulse detection algorithm and an SpO2 measurement algorithm are performed. Depending on whether a chest compression is delivered manually or automatically, parameter selections for the compression detection algorithm, the PPG-based pulse detection algorithm, and the SpO2 measurement algorithm are adjusted accordingly.Type: GrantFiled: July 7, 2020Date of Patent: August 9, 2022Assignee: Koninklijke Philips N.V.Inventors: Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Jakob Van De Laar, Jens Muehlsteff
-
Publication number: 20220160579Abstract: There is provided an apparatus for use in measuring blood pressure. The apparatus comprises a processor configured to acquire a signal indicative of pressure oscillations detected inside a cuff inflated to pressurize a measurement site of a subject undergoing cardiopulmonary resuscitation. The pressure oscillations detected inside the cuff are indicative of a pulse of the subject. The processor is also configured to trigger a blood pressure measurement for the subject based on the pressure oscillations detected inside the cuff.Type: ApplicationFiled: May 2, 2020Publication date: May 26, 2022Inventors: Maarten Petrus Joseph KUENEN, Ralph Wilhelm Christianus Gemma Rosa WIJSHOFF, Jens MUEHLSTEFF
-
Publication number: 20220142858Abstract: A device, system, and method to control activation of oxygen saturation (SpO2) measurements in a cardio-pulmonary resuscitation (CPR) procedure. When compressions are present, only a PPG-based pulse detection algorithm is performed. When a spontaneous pulse has been detected and compressions are not detected during a predetermined time period, both a PPG-based pulse detection algorithm and an SpO2 measurement algorithm are performed. Depending on whether a chest compression is delivered manually or automatically, parameter selections for the compression detection algorithm, the PPG-based pulse detection algorithm, and the SpO2 measurement algorithm are adjusted accordingly.Type: ApplicationFiled: July 7, 2020Publication date: May 12, 2022Inventors: RALPH WILHELM CHRISTIANUS GEMMA ROSA WIJSHOFF, JAKOB VAN DE LAAR, JENS MUEHLSTEFF
-
Publication number: 20210282670Abstract: A PPG pulse oximeter employing a dual PPG probe including a central PPG sensor and a peripheral PPG sensor connectable in a circuit configuration with a pulse oximeter monitor. In operation, the pulse oximeter monitor controls synchronous generations of a central PPG signal by the central PPG sensor and of a peripheral PPG signal by the peripheral PPG sensor, and also control a CPR pulse detection via the dual PPG probe including a detection of a presence of a spontaneous pulse of the central PPG signal and a detection of a presence of a spontaneous pulse of the peripheral PPG signal.Type: ApplicationFiled: July 12, 2019Publication date: September 16, 2021Inventors: Jens Muehlsteff, Ralph Wilhelm Christianus Gemma Rosa Wijshoff
-
Publication number: 20210259567Abstract: The present invention relates to a device, system and method for improved non-invasive and objective detection of pulse of a subject. The device comprises an input unit (2a) configured to obtain a series of images of a skin region of the subject and a processing unit (2b) for processing said series of images by detecting pulse-related motion of the skin within the skin region from the series of images, generating a motion map of the skin region from the detected pulse-related motion, comparing the generated motion map with an expected motion map of the skin region, and determining the presence of pulse within the skin region based on the comparison.Type: ApplicationFiled: July 23, 2019Publication date: August 26, 2021Inventors: KIRAN HAMILTON, J. DELLIMORE, MUKUL JULIUS ROCQUE, RALPH WILHELM CHRISTIANUS GEMMA ROSA WIJSHOFF, JENS MUEHLSTEFF
-
Publication number: 20210169736Abstract: The present invention relates to a device, system and method providing quantitative support for detection of return of spontaneous circulation during cardiopulmonary resuscitation. A photoplethysmography measurement is used to trigger a blood pressure measurement for assessing return of spontaneous circulation and hence for guiding a user through CPR. The present invention may prevent futile interruptions during compressions as well as re-arrest of the heart due to unnecessary compressions.Type: ApplicationFiled: April 10, 2019Publication date: June 10, 2021Inventors: RALPH WILHELM CHRISTIANUS GEMMA ROSA WIJSHOFF, PIERRE HERMANUS WOERLEE, JENS MUEHLSTEFF
-
Patent number: 10987275Abstract: A device for supporting determination of return of spontaneous circulation, ROSC, during an associated cardiopulmonary resuscitation, CPR, procedure which is being performed on an associated patient. A sensor is used to sense a physiological signal of the patient. Frequency analysis of the signal is carried out to extract dominant fundamental frequency components in the signal. From this analysis it is possible to determine that there has been a potential ROSC.Type: GrantFiled: June 23, 2016Date of Patent: April 27, 2021Assignee: KONINKLIKE PHILIPS N.V.Inventors: Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Jens Muehlsteff, Simone Cornelia Maria Anna Ordelman, Wouter Herman Peeters
-
Patent number: 10675213Abstract: A device for supporting determination of return of spontaneous circulation, ROSC, during an associated cardiopulmonary resuscitation, CPR, procedure which is being performed on an associated patient. A sensor is used to sense a physiological signal of the patient. Frequency analysis of the signal is carried out to extract dominant fundamental frequency components in the signal. From this analysis it is possible to determine that there has been a potential ROSC.Type: GrantFiled: June 23, 2016Date of Patent: June 9, 2020Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Jens Muehlsteff, Simone Cornelia Maria Anna Ordelman, Wouter Herman Peeters
-
Publication number: 20200100705Abstract: The present invention relates to a device, system and method for detection of pulse and/or pulse-related information of a patient.Type: ApplicationFiled: June 22, 2018Publication date: April 2, 2020Inventors: KIRAN HAMILTON J. DELLIMORE, JENS MUEHLSTEFF, RALPH WILHELM CHRISTIANUS GEMMA ROSA WIJSHOFF, LARS SCHMITT
-
Publication number: 20190328333Abstract: The present invention relates to a sensor device and method for obtaining physiological information of a subject. The sensor device comprises a PPG sensor (20), a motion sensor (30) and a device (10) for obtaining physiological information of the subject. The device comprises a processing unit (13) for generating an output signal carrying physiological information by (i) modulating the motion reference signal on a carrier signal of the first set of carrier signals or on a second carrier signal orthogonal to the first set of carrier signals to obtain a modulated signal and combining the modulated signal with the modulated PPG signals to obtain the output signal or (ii) demodulating the modulated PPG signals, performing artifact-reduction on the demodulated PPG signals using the motion reference signal to obtain artifact-reduced PPG signals and modulating the artifact-reduced PPG signals on the first set of carrier signals to obtain the output signal.Type: ApplicationFiled: January 2, 2018Publication date: October 31, 2019Inventors: Ralph Wilhelm Christianus Gemma Rosa WIJSHOFF, Jens MUEHLSTEFF, Olaf SUCH