Patents by Inventor Ram GANAPATHI

Ram GANAPATHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240045426
    Abstract: Autonomous driving is one of the world's most challenging computational problems. Very large amounts of data from cameras, RADARs, LIDARs, and HD-Maps must be processed to generate commands to control the car safely and comfortably in real-time. This challenging task requires a dedicated supercomputer that is energy-efficient and low-power, complex high-performance software, and breakthroughs in deep learning AI algorithms. To meet this task, the present technology provides advanced systems and methods that facilitate autonomous driving functionality, including a platform for autonomous driving Levels 3, 4, and/or 5. In preferred embodiments, the technology provides an end-to-end platform with a flexible architecture, including an architecture for autonomous vehicles that leverages computer vision and known ADAS techniques, providing diversity and redundancy, and meeting functional safety standards.
    Type: Application
    Filed: May 4, 2023
    Publication date: February 8, 2024
    Inventors: Michael Alan DITTY, Gary HICOK, Jonathan SWEEDLER, Clement FARABET, Mohammed Abdulla YOUSUF, Tai-Yuen CHAN, Ram GANAPATHI, Ashok SRINIVASAN, Michael Rod TRUOG, Karl GREB, John George MATHIESON, David NISTER, Kevin FLORY, Daniel PERRIN, Dan HETTENA
  • Patent number: 11874662
    Abstract: This disclosure presents an assisted driving vehicle system, including autonomous, semi-autonomous, and technology assisted vehicles, that can share sensor data among two or more controllers. A sensor can have one communication channel to a controller, thereby saving cabling and circuitry costs. The data from the sensor can be sent from one controller to another controller to enable redundancy and backup in case of a system failure. Sensor data from more than one sensor can be aggregated at one controller prior to the aggregated sensor data being communicated to another controller thereby saving bandwidth and reducing transmission times. The sharing of sensor data can be enabled through the use of a sensor data distributor, such as a converter, repeater, or a serializer/deserializer set located as part of the controller and communicatively coupled to another such device in another controller using a data interface communication channel.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: January 16, 2024
    Assignee: NVIDIA Corporation
    Inventors: Mark Costin, Zoran Nikolic, Ram Ganapathi
  • Publication number: 20230410650
    Abstract: In various examples, audio alerts of emergency response vehicles may be detected and classified using audio captured by microphones of an autonomous or semi-autonomous machine in order to identify travel directions, locations, and/or types of emergency response vehicles in the environment. For example, a plurality of microphone arrays may be disposed on an autonomous or semi-autonomous machine and used to generate audio signals corresponding to sounds in the environment. These audio signals may be processed to determine a location and/or direction of travel of an emergency response vehicle (e.g., using triangulation). Additionally, to identify siren types—and thus emergency response vehicle types corresponding thereto—the audio signals may be used to generate representations of a frequency spectrum that may be processed using a deep neural network (DNN) that outputs probabilities of alert types being represented by the audio data.
    Type: Application
    Filed: September 6, 2023
    Publication date: December 21, 2023
    Inventors: Ambrish Dantrey, Atousa Torabi, Anshul Jain, Ram Ganapathi, Abhijit Patait, Revanth Reddy Nalla, Niranjan Avadhanam
  • Patent number: 11816987
    Abstract: In various examples, audio alerts of emergency response vehicles may be detected and classified using audio captured by microphones of an autonomous or semi-autonomous machine in order to identify travel directions, locations, and/or types of emergency response vehicles in the environment. For example, a plurality of microphone arrays may be disposed on an autonomous or semi-autonomous machine and used to generate audio signals corresponding to sounds in the environment. These audio signals may be processed to determine a location and/or direction of travel of an emergency response vehicle (e.g., using triangulation). Additionally, to identify siren types—and thus emergency response vehicle types corresponding thereto—the audio signals may be used to generate representations of a frequency spectrum that may be processed using a deep neural network (DNN) that outputs probabilities of alert types being represented by the audio data.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: November 14, 2023
    Assignee: NVIDIA Corporation
    Inventors: Ambrish Dantrey, Atousa Torabi, Anshul Jain, Ram Ganapathi, Abhijit Patait, Revanth Reddy Nalla, Niranjan Avadhanam
  • Publication number: 20230356728
    Abstract: Approaches for an advanced AI-assisted vehicle can utilize an extensive suite of sensors inside and outside the vehicle, providing information to a computing platform running one or more neural networks. The neural networks can perform functions such as facial recognition, eye tracking, gesture recognition, head position, and gaze tracking to monitor the condition and safety of the driver and passengers. The system also identifies and tracks body pose and signals of people inside and outside the vehicle to understand their intent and actions. The system can track driver gaze to identify objects the driver might not see, such as cross-traffic and approaching cyclists. The system can provide notification of potential hazards, advice, and warnings. The system can also take corrective action, which may include controlling one or more vehicle subsystems, or when necessary, autonomously controlling the entire vehicle. The system can work with vehicle systems for enhanced analytics and recommendations.
    Type: Application
    Filed: May 8, 2023
    Publication date: November 9, 2023
    Inventors: Anshul Jain, Ratin Kumar, Feng Hu, Niranjan Avadhanam, Atousa Torabi, Hairong Jiang, Ram Ganapathi, Taek Kim
  • Publication number: 20230176577
    Abstract: Autonomous driving is one of the world's most challenging computational problems. Very large amounts of data from cameras, RADARs, LIDARs, and HD-Maps must be processed to generate commands to control the car safely and comfortably in real-time. This challenging task requires a dedicated supercomputer that is energy-efficient and low-power, complex high-performance software, and breakthroughs in deep learning AI algorithms. To meet this task, the present technology provides advanced systems and methods that facilitate autonomous driving functionality, including a platform for autonomous driving Levels 3, 4, and/or 5. In preferred embodiments, the technology provides an end-to-end platform with a flexible architecture, including an architecture for autonomous vehicles that leverages computer vision and known ADAS techniques, providing diversity and redundancy, and meeting functional safety standards.
    Type: Application
    Filed: December 7, 2022
    Publication date: June 8, 2023
    Inventors: Michael Alan DITTY, Gary HICOK, Jonathan SWEEDLER, Clement FARABET, Mohammed Abdulla YOUSUF, Tai-Yuen CHAN, Ram GANAPATHI, Ashok SRINIVASAN, Michael Rod TRUOG, Karl GREB, John George MATHIESON, David NISTER, Kevin FLORY, Daniel PERRIN, Dan HETTENA
  • Patent number: 11644834
    Abstract: Autonomous driving is one of the world's most challenging computational problems. Very large amounts of data from cameras, RADARs, LIDARs, and HD-Maps must be processed to generate commands to control the car safely and comfortably in real-time. This challenging task requires a dedicated supercomputer that is energy-efficient and low-power, complex high-performance software, and breakthroughs in deep learning AI algorithms. To meet this task, the present technology provides advanced systems and methods that facilitate autonomous driving functionality, including a platform for autonomous driving Levels 3, 4, and/or 5. In preferred embodiments, the technology provides an end-to-end platform with a flexible architecture, including an architecture for autonomous vehicles that leverages computer vision and known ADAS techniques, providing diversity and redundancy, and meeting functional safety standards.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 9, 2023
    Assignee: NVIDIA Corporation
    Inventors: Michael Alan Ditty, Gary Hicok, Jonathan Sweedler, Clement Farabet, Mohammed Abdulla Yousuf, Tai-Yuen Chan, Ram Ganapathi, Ashok Srinivasan, Michael Rod Truog, Karl Greb, John George Mathieson, David Nister, Kevin Flory, Daniel Perrin, Dan Hettena
  • Patent number: 11634149
    Abstract: In a self-driving autonomous vehicle, a controller architecture includes multiple processors within the same box. Each processor monitors the others and takes appropriate safe action when needed. Some processors may run dormant or low priority redundant functions that become active when another processor is detected to have failed. The processors are independently powered and independently execute redundant algorithms from sensor data processing to actuation commands using different hardware capabilities (GPUs, processing cores, different input signals, etc.). Intentional hardware and software diversity improves fault tolerance. The resulting fault-tolerant/fail-operational system meets ISO26262 ASIL-D specifications based on a single electronic controller unit platform that can be used for self-driving vehicles.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: April 25, 2023
    Assignee: NVIDIA Corporation
    Inventors: Mohammed Abdulla Yousuf, T. Y. Chan, Ram Ganapathi, Ashok Srinivasan, Mike Truog
  • Publication number: 20220157165
    Abstract: In various examples, audio alerts of emergency response vehicles may be detected and classified using audio captured by microphones of an autonomous or semi-autonomous machine in order to identify travel directions, locations, and/or types of emergency response vehicles in the environment. For example, a plurality of microphone arrays may be disposed on an autonomous or semi-autonomous machine and used to generate audio signals corresponding to sounds in the environment. These audio signals may be processed to determine a location and/or direction of travel of an emergency response vehicle (e.g., using triangulation). Additionally, to identify siren types—and thus emergency response vehicle types corresponding thereto—the audio signals may be used to generate representations of a frequency spectrum that may be processed using a deep neural network (DNN) that outputs probabilities of alert types being represented by the audio data.
    Type: Application
    Filed: November 18, 2020
    Publication date: May 19, 2022
    Inventors: Ambrish Dantrey, Atousa Torabi, Anshul Jain, Ram Ganapathi, Abhijit Patait, Revanth Reddy Nalla, Niranjan Avadhanam
  • Publication number: 20220080992
    Abstract: In a self-driving autonomous vehicle, a controller architecture includes multiple processors within the same box. Each processor monitors the others and takes appropriate safe action when needed, Some processors may run dormant or low priority redundant functions that become active when another processor is detected to have failed. The processors are independently powered and independently execute redundant algorithms from sensor data processing to actuation commands using different hardware capabilities (GPUs, processing cores, different input signals, etc.). Intentional hardware and software diversity improves fault tolerance. The resulting fault-tolerant/fail-operational system meets ISO26262 ASIL-D specifications based on a single electronic controller unit platform that can be used for self-driving vehicles.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventors: Mohammed Abdulla YOUSUF, T. Y. CHAN, Ram GANAPATHI, Ashok SRINIVASAN, Mike TRUOG
  • Publication number: 20220057798
    Abstract: This disclosure presents an assisted driving vehicle system, including autonomous, semi-autonomous, and technology assisted vehicles, that can share sensor data among two or more controllers. A sensor can have one communication channel to a controller, thereby saving cabling and circuitry costs. The data from the sensor can be sent from one controller to another controller to enable redundancy and backup in case of a system failure. Sensor data from more than one sensor can be aggregated at one controller prior to the aggregated sensor data being communicated to another controller thereby saving bandwidth and reducing transmission times. The sharing of sensor data can be enabled through the use of a sensor data distributor, such as a converter, repeater, or a serializer/deserializer set located as part of the controller and communicatively coupled to another such device in another controller using a data interface communication channel.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Inventors: Mark Costin, Zoran Nikolic, Ram Ganapathi
  • Patent number: 11214273
    Abstract: In a self-driving autonomous vehicle, a controller architecture includes multiple processors within the same box. Each processor monitors the others and takes appropriate safe action when needed. Some processors may run dormant or low priority redundant functions that become active when another processor is detected to have failed. The processors are independently powered and independently execute redundant algorithms from sensor data processing to actuation commands using different hardware capabilities (GPUs, processing cores, different input signals, etc.). Intentional hardware and software diversity improves fault tolerance. The resulting fault-tolerant/fail-operational system meets ISO26262 ASIL D specifications based on a single electronic controller unit platform that can be used for self-driving vehicles.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: January 4, 2022
    Assignee: NVIDIA Corporation
    Inventors: Mohammed Abdulla Yousuf, T. Y. Chan, Ram Ganapathi, Ashok Srinivasan, Mike Truog
  • Patent number: 11163303
    Abstract: This disclosure presents an assisted driving vehicle system, including autonomous, semi-autonomous, and technology assisted vehicles, that can share sensor data among two or more controllers. A sensor can have one communication channel to a controller, thereby saving cabling and circuitry costs. The data from the sensor can be sent from one controller to another controller to enable redundancy and backup in case of a system failure. In another embodiment, sensor data from more than one sensor can be aggregated at one controller prior to the aggregated sensor data being communicated to another controller thereby saving bandwidth and reducing transmission times. The sharing of sensor data can be enabled through the use of a sensor data distributor, such as a converter, repeater, or a serializer/deserializer set located as part of the controller and communicatively coupled to another such device in another controller using a data interface communication channel.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: November 2, 2021
    Assignee: Nvidia Corporation
    Inventors: Mark Costin, Zoran Nikolic, Ram Ganapathi
  • Publication number: 20190258251
    Abstract: Autonomous driving is one of the world's most challenging computational problems. Very large amounts of data from cameras, RADARs, LIDARs, and HD-Maps must be processed to generate commands to control the car safely and comfortably in real-time. This challenging task requires a dedicated supercomputer that is energy-efficient and low-power, complex high-performance software, and breakthroughs in deep learning AI algorithms. To meet this task, the present technology provides advanced systems and methods that facilitate autonomous driving functionality, including a platform for autonomous driving Levels 3, 4, and/or 5. In preferred embodiments, the technology provides an end-to-end platform with a flexible architecture, including an architecture for autonomous vehicles that leverages computer vision and known ADAS techniques, providing diversity and redundancy, and meeting functional safety standards.
    Type: Application
    Filed: November 9, 2018
    Publication date: August 22, 2019
    Inventors: Michael Alan DITTY, Gary HICOK, Jonathan SWEEDLER, Clement FARABET, Mohammed Abdulla YOUSUF, Tai-Yuen CHAN, Ram GANAPATHI, Ashok SRINIVASAN, Michael Rod TRUOG, Karl GREB, John George MATHIESON, David Nister, Kevin Flory, Daniel Perrin, Dan Hettena
  • Publication number: 20190250611
    Abstract: This disclosure presents an assisted driving vehicle system, including autonomous, semi-autonomous, and technology assisted vehicles, that can share sensor data among two or more controllers. A sensor can have one communication channel to a controller, thereby saving cabling and circuitry costs. The data from the sensor can be sent from one controller to another controller to enable redundancy and backup in case of a system failure. In another embodiment, sensor data from more than one sensor can be aggregated at one controller prior to the aggregated sensor data being communicated to another controller thereby saving bandwidth and reducing transmission times. The sharing of sensor data can be enabled through the use of a sensor data distributor, such as a converter, repeater, or a serializer/deserializer set located as part of the controller and communicatively coupled to another such device in another controller using a data interface communication channel.
    Type: Application
    Filed: February 12, 2019
    Publication date: August 15, 2019
    Inventors: Mark Costin, Zoran Nikolic, Ram Ganapathi
  • Publication number: 20180370540
    Abstract: In a self-driving autonomous vehicle, a controller architecture includes multiple processors within the same box. Each processor monitors the others and takes appropriate safe action when needed. Some processors may run dormant or low priority redundant functions that become active when another processor is detected to have failed. The processors are independently powered and independently execute redundant algorithms from sensor data processing to actuation commands using different hardware capabilities (GPUs, processing cores, different input signals, etc.). Intentional hardware and software diversity improves fault tolerance. The resulting fault-tolerant/fail-operational system meets ISO26262 ASIL D specifications based on a single electronic controller unit platform that can be used for self-driving vehicles.
    Type: Application
    Filed: January 26, 2018
    Publication date: December 27, 2018
    Inventors: Mohammed Abdulla YOUSUF, T. Y. CHAN, Ram GANAPATHI, Ashok SRINIVASAN, Mike TRUOG