Patents by Inventor Ramachandra Dasari

Ramachandra Dasari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7647092
    Abstract: The system and method of the present invention relates to using spectroscopy, for example, Raman spectroscopic methods for diagnosis of tissue conditions such as vascular disease or cancer. In accordance with a preferred embodiment of the present invention, a system for measuring tissue includes a fiber optic probe having a proximal end, a distal end, and a diameter of 2 mm or less. This small diameter allows the system to be used for the diagnosis of coronary artery disease or other small lumens or soft tissue with minimal trauma. A delivery optical fiber is included in the probe coupled at the proximal end to a light source. A filter for the delivery fibers is included at the distal end. The system includes a collection optical fiber (or fibers) in the probe that collects Raman scattered radiation from tissue, the collection optical fiber is coupled at the proximal end to a detector. A second filter is disposed at the distal end of the collection fibers.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: January 12, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Jason T. Motz, Luis H. Galindo, Martin Hunter, Ramachandra Dasari, Michael S. Feld
  • Publication number: 20070167835
    Abstract: The present invention relates to a spectroscopic imaging system using autofluorescence and reflectance images to diagnose tissue. A preferred embodiment of the invention uses a plurality of light sources to illuminate a tissue region to provide the fluorescence and reflectance images, respectively.
    Type: Application
    Filed: July 25, 2006
    Publication date: July 19, 2007
    Inventors: Chung-Chieh Yu, Condon Lau, Stephen Fulghum, Christopher Fang-Yen, Ramachandra Dasari, Michael Feld
  • Publication number: 20070160325
    Abstract: A tunable transmissive grating comprises a transmissive dispersive element, a reflective element, and an angle ? formed between the two elements. A first optical path is formed according to the angle ?, wherein light dispersing from the dispersive element is directed onto the reflective element and reflects therefrom. At least one element is rotatable about a rotational center to cause a second optical path and thereby tune the wavelength of the light reflecting from the reflective element. Both elements can be rotatable together around a common rotational center point according to certain embodiments, and/or each element can be independently rotated around a rotational axis associated only with that element. According to some embodiments, the relative angle ? formed between the elements is held constant; however, in other embodiments ? can vary.
    Type: Application
    Filed: July 7, 2006
    Publication date: July 12, 2007
    Inventors: Hyungbin Son, Jing Kong, Ramachandra Dasari, Mildred Dresselhaus
  • Publication number: 20060291712
    Abstract: Hilbert phase microscopy (HPM) as an optical technique for measuring high transverse resolution quantitative phase images associated with optically transparent objects. Due to its single-shot nature, HPM is suitable for investigating rapid phenomena that take place in transparent structures such as biological cells. A preferred embodiment is used for measuring biological systems including measurements on red blood cells, while its ability to quantify dynamic processes on the millisecond scale, for example, can be illustrated with measurements on evaporating micron-size water droplets.
    Type: Application
    Filed: March 24, 2006
    Publication date: December 28, 2006
    Inventors: Gabriel Popescu, Ramachandra Dasari, Michael Feld, Takahiro Ikeda
  • Publication number: 20050105097
    Abstract: Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code.
    Type: Application
    Filed: June 18, 2004
    Publication date: May 19, 2005
    Applicant: Massachusetts Institute of Technology
    Inventors: Christopher Fang-Yen, Gabriel Popescu, Changhuei Yang, Adam Wax, Ramachandra Dasari, Michael Feld
  • Publication number: 20050057756
    Abstract: Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code.
    Type: Application
    Filed: April 13, 2004
    Publication date: March 17, 2005
    Applicant: Massachusetts Institute of Technology
    Inventors: Christopher Fang-Yen, Gabriel Popescu, Changhuei Yang, Adam Wax, Ramachandra Dasari, Michael Feld
  • Publication number: 20050003376
    Abstract: Surface-enhanced spectroscopy, such as surface-enhanced Raman spectroscopy employs aggregates that are of a size that allows easy handling. The aggregates are generally at least about 500 nm in dimension. The aggregates can be made of metal particles of size less than 100 nm, allowing enhanced spectroscopic techniques that operate at high sensitivity. This allows the use of larger, easily-handleable aggregates. Signals are determined that are caused by single analytes adsorbed to single aggregates, or single analytes adsorbed on a surface. The single analytes can be DNA or RNA fragments comprising at least one base.
    Type: Application
    Filed: November 26, 2003
    Publication date: January 6, 2005
    Applicant: Massachusetts Institute of Technology
    Inventors: Katrin Kneipp, Harald Kneipp, Irving Itzkan, Ramachandra Dasari, Michael Feld
  • Publication number: 20040073120
    Abstract: The system and method of the present invention relates to using spectroscopy, for example, Raman spectroscopic methods for diagnosis of tissue conditions such as vascular disease or cancer. In accordance with a preferred embodiment of the present invention, a system for measuring tissue includes a fiber optic probe having a proximal end, a distal end, and a diameter of 2 mm or less. This small diameter allows the system to be used for the diagnosis of coronary artery disease or other small lumens or soft tissue with minimal trauma. A delivery optical fiber is included in the probe coupled at the proximal end to a light source. A filter for the delivery fibers is included at the distal end. The system includes a collection optical fiber (or fibers) in the probe that collects Raman scattered radiation from tissue, the collection optical fiber is coupled at the proximal end to a detector. A second filter is disposed at the distal end of the collection fibers.
    Type: Application
    Filed: April 4, 2003
    Publication date: April 15, 2004
    Applicant: Massachusetts Institute of Technology
    Inventors: Jason T. Motz, Luis H. Galindo, Martin Hunter, Abigail S. Haka, Saumil Gandhi, Ramachandra Dasari, Michael S. Feld
  • Publication number: 20030191398
    Abstract: The system and method of the present invention relates to using spectroscopy, for example, Raman spectroscopic methods for diagnosis of tissue conditions such as vascular disease or cancer. In accordance with a preferred embodiment of the present invention, a system for measuring tissue includes a fiber optic probe having a proximal end, a distal end, and a diameter of 2 mm or less. This small diameter allows the system to be used for the diagnosis of coronary artery disease or other small lumens or soft tissue with minimal trauma. A delivery optical fiber is included in the probe coupled at the proximal end to a light source. A filter for the delivery fibers is included at the distal end. The system includes a collection optical fiber (or fibers) in the probe that collects Raman scattered radiation from tissue, the collection optical fiber is coupled at the proximal end to a detector. A second filter is disposed at the distal end of the collection fibers.
    Type: Application
    Filed: June 21, 2002
    Publication date: October 9, 2003
    Applicant: Massachusetts Institute of Technology
    Inventors: Jason T. Motz, Luis H. Galindo, Martin Hunter, Ramachandra Dasari, Michael S. Feld