Patents by Inventor Ramakrishna Vetury

Ramakrishna Vetury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190081611
    Abstract: A system for a wireless communication infrastructure using single crystal devices. The wireless system can include a controller coupled to a power source, a signal processing module, and a plurality of transceiver modules. Each of the transceiver modules includes a transmit module configured on a transmit path and a receive module configured on a receive path. The transmit modules each include at least a transmit filter having one or more filter devices, while the receive modules each include at least a receive filter. Each of these filter devices includes a single crystal acoustic resonator device with at least a first electrode material, a single crystal material, and a second electrode material. Wireless infrastructures using the present single crystal technology perform better in high power density applications, enable higher out of band rejection (OOBR), and achieve higher linearity as well.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 14, 2019
    Inventors: Ramakrishna VETURY, Shawn R. GIBB, Mark D. BOOMGARDEN, Jeffrey B. SHEALY
  • Patent number: 10217930
    Abstract: A method of manufacture for an acoustic resonator device. The method can include forming a topside metal electrode overlying a piezoelectric substrate with a piezoelectric layer and a seed substrate. A topside micro-trench can be formed within the piezoelectric layer and a topside metal can be formed overlying the topside micro-trench. This topside metal can include a topside metal plug formed within the topside micro-trench. A first backside trench can be formed underlying the topside metal electrode, and a second backside trench can be formed underlying the topside micro-trench. A backside metal electrode can be formed within the first backside trench, while a backside metal plug can be formed within the second backside trench and electrically coupled to the topside metal plug and the backside metal electrode. The topside micro-trench, the topside metal plug, the second backside trench, and the backside metal plug form a micro-via.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: February 26, 2019
    Assignee: AKOUSTIS, INC.
    Inventors: Alexander Y. Feldman, Mark D. Boomgarden, Michael P. Lewis, Jeffrey B. Shealy, Ramakrishna Vetury
  • Publication number: 20190036504
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: September 18, 2018
    Publication date: January 31, 2019
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20190020324
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: September 19, 2018
    Publication date: January 17, 2019
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20190020325
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: September 19, 2018
    Publication date: January 17, 2019
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20180367113
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Inventors: Jeffrey B. SHEALY, Rohan W. HOULDEN, Shawn R. GIBB, Mary WINTERS, Ramakrishna VETURY
  • Publication number: 20180309425
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: June 27, 2018
    Publication date: October 25, 2018
    Applicant: Akoustis, Inc.
    Inventors: Jeffrey B. SHEALY, Rohan W. HOULDEN, Shawn R. GIBB, Mary WINTERS, Ramakrishna VETURY
  • Publication number: 20180309422
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 25, 2018
    Inventors: Jeffrey B. SHEALY, Michael HODGE, Rohan W. HOULDEN, Shawn R. GIBB, Mary WINTERS, Ramakrishna VETURY, David AICHELE
  • Patent number: 10110190
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 23, 2018
    Assignee: AKOUSTIS, INC.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10110188
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 23, 2018
    Assignee: AKOUSTIS, INC.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10110189
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 23, 2018
    Assignee: AKOUSTIS, INC.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Publication number: 20180123541
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20180123540
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20180123542
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Ramakrishna VETURY, Alexander Y. FELDMAN, Michael D. HODGE, Art GEISS, Shawn R. GIBB, Mark D. BOOMGARDEN, Michael P. LEWIS, Pinal PATEL, Jeffrey B. SHEALY
  • Publication number: 20180054176
    Abstract: A method and structure for a transfer process for an acoustic resonator device. In an example, a bulk acoustic wave resonator (BAWR) with an air reflection cavity is formed. A piezoelectric thin film is grown on a crystalline substrate. A first patterned electrode is deposited on the surface of the piezoelectric film. An etched sacrificial layer is deposited over the first electrode and a planarized support layer is deposited over the sacrificial layer, which is then bonded to a substrate wafer. The crystalline substrate is removed and a second patterned electrode is deposited over a second surface of the film. The sacrificial layer is etched to release the air reflection cavity. Also, a cavity can instead be etched into the support layer prior to bonding with the substrate wafer. Alternatively, a reflector structure can be deposited on the first electrode, replacing the cavity.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 22, 2018
    Inventors: Dae Ho KIM, Mary WINTERS, Ramakrishna VETURY, Jeffrey B. SHEALY
  • Publication number: 20170264256
    Abstract: A method of manufacture for an acoustic resonator device. The method includes forming a nucleation layer characterized by nucleation growth parameters overlying a substrate and forming a strained piezoelectric layer overlying the nucleation layer. The strained piezoelectric layer is characterized by a strain condition and piezoelectric layer parameters. The process of forming the strained piezoelectric layer can include an epitaxial growth process configured by nucleation growth parameters and piezoelectric layer parameters to modulate the strain condition in the strained piezoelectric layer. By modulating the strain condition, the piezoelectric properties of the resulting piezoelectric layer can be adjusted and improved for specific applications.
    Type: Application
    Filed: July 27, 2016
    Publication date: September 14, 2017
    Inventors: Shawn R. GIBB, Alexander Y. FELDMAN, Mark D. BOOMGARDEN, Michael P. LEWIS, Ramakrishna VETURY, Jeffrey B. SHEALY
  • Patent number: 9124221
    Abstract: A wide bandwidth radio frequency amplifier is disclosed. The wide bandwidth radio frequency amplifier has a first signal path having a first input and a first output along with a first dual gate field effect transistor having a first-first gate coupled to the first input and a first drain coupled to the first output. The wide bandwidth radio frequency amplifier also includes a second signal path having a second input and a second output and a second dual gate field effect transistor having a second-first gate coupled to the second input and a second drain coupled to the second output.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: September 1, 2015
    Assignee: RF Micro Devices, Inc.
    Inventors: Ramakrishna Vetury, Jeffrey Blanton Shealy
  • Publication number: 20150155222
    Abstract: A semiconductor die having improved thermal performance is disclosed. The semiconductor die includes a substrate having a device layer with a plurality of vias that pass through the substrate and the device layer, wherein individual ones of the plurality of vias have an open space volume of less than around about 70,000 cubic micrometers to around about 20,000 cubic micrometers. In at least one embodiment, the substrate of the semiconductor die is made of silicon carbide (SiC) and the device layer is made of gallium nitride (GaN).
    Type: Application
    Filed: December 2, 2014
    Publication date: June 4, 2015
    Inventors: Jeffrey Blanton Shealy, Michael Dyke LeFevre, Brian Allen Trabert, Christopher Thomas Burns, Michael Thomas Fresina, Ramakrishna Vetury
  • Publication number: 20140015609
    Abstract: A wide bandwidth radio frequency amplifier is disclosed. The wide bandwidth radio frequency amplifier has a first signal path having a first input and a first output along with a first dual gate field effect transistor having a first-first gate coupled to the first input and a first drain coupled to the first output. The wide bandwidth radio frequency amplifier also includes a second signal path having a second input and a second output and a second dual gate field effect transistor having a second-first gate coupled to the second input and a second drain coupled to the second output.
    Type: Application
    Filed: July 16, 2013
    Publication date: January 16, 2014
    Inventors: Ramakrishna Vetury, Jeffrey Blanton Shealy
  • Patent number: 7557421
    Abstract: The present invention is a hybrid integrated circuit comprising at least two semiconductor dies. A high performance semiconductor die includes high performance epitaxy layers grown on a donor substrate, which may form active devices such as transistors. A supporting semiconductor die includes epitaxy layers of a commercially available technology and grown on a native substrate to form passive devices such as resistors, capacitors, inductors, backside via holes, or active devices such as transistors The semiconductor dies are attached to a metallic mounting structure and may be electrically interconnected using traditional IC interconnect methods, such as wire bonding. The metallic mounting structure may function as a grounding base, which may be formed of electrically conductive metal such as copper. The high performance epitaxy layers may include GaN epitaxy layers, AlGaN epitaxy layers, SiC epitaxy layers, or a combination of the three.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: July 7, 2009
    Assignee: RF Micro Devices, Inc.
    Inventors: Jeffrey B. Shealy, Matthew Poulton, Ramakrishna Vetury