Patents by Inventor Ramamoorthy Ramesh

Ramamoorthy Ramesh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240099018
    Abstract: Approaches for integrating FE memory arrays into a processor, and the resulting structures are described. Simultaneous integrations of regions with ferroelectric (FE) cells and regions with standard interconnects are also described. FE cells include FE capacitors that include a FE stack of layers, which is encapsulated with a protection material. The protection material protects the FE stack of layers as structures for regular logic are fabricated in the same die.
    Type: Application
    Filed: August 15, 2023
    Publication date: March 21, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Gaurav Thareja, Amrita Mathuriya
  • Patent number: 11908704
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: February 20, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, Fnu Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Publication number: 20240047426
    Abstract: Described is a packaging technology to improve performance of an AI processing system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die includes memory and the second die includes computational logic. The first die comprises a ferroelectric RAM (FeRAM) having bit-cells. Each bit-cell comprises an access transistor and a capacitor including ferroelectric material. The access transistor is coupled to the ferroelectric material. The FeRAM can be FeDRAM or FeSRAM. The memory of the first die may store input data and weight factors. The computational logic of the second die is coupled to the memory of the first die. The second die is an inference die that applies fixed weights for a trained model to an input data to generate an output. In one example, the second die is a training die that enables learning of the weights.
    Type: Application
    Filed: July 25, 2023
    Publication date: February 8, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh
  • Patent number: 11894417
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: February 6, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11863183
    Abstract: A new class of multiplier cells (analog or digital) is derived from a 1-bit full adder and an AND gate. The 1-bit full adder is derived from first and second majority gates. The multiplier cell can also be implemented with a combination of two majority gates with majority and AND functions integrated in each of them. The two majority gates are coupled. Each of the first and second majority logic gates comprise a capacitor with non-linear polar material. The first and second majority gates receive the two inputs A and B that are to be multiplied. Other inputs received by the first and second majority gates are carry-in input, a sum-in input, and a bias voltage. The bias voltage is a negative voltage, which produces an integrated AND function in conjunction with a majority function. The second majority gate receives additional inputs, which are inverted output of the first majority gate.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: January 2, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Sasikanth Manipatruni, Yuan-Sheng Fang, Robert Menezes, Rajeev Kumar Dokania, Gaurav Thareja, Ramamoorthy Ramesh, Amrita Mathuriya
  • Publication number: 20230420022
    Abstract: Described is a low power, high-density non-volatile differential memory bit-cell. The transistors of the differential memory bit-cell can be planar or non-planer and can be fabricated in the frontend or backend of a die. A bit-cell of the non-volatile differential memory bit-cell comprises first transistor first non-volatile structure that are controlled to store data of a first value. Another bit-cell of the non-volatile differential memory bit-cell comprises second transistor and second non-volatile structure that are controlled to store data of a second value, wherein the first value is an inverse of the second value. The first and second volatile structures comprise ferroelectric material (e.g., perovskite, hexagonal ferroelectric, improper ferroelectric).
    Type: Application
    Filed: April 28, 2021
    Publication date: December 28, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh
  • Patent number: 11832451
    Abstract: Non lead-based perovskite ferroelectric devices for high density memory and logic applications and methods of fabrication are described. While various embodiments are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For example, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: November 28, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Debraj Guhabiswas, Maria Isabel Perez, Jason Y. Wu, James David Clarkson, Gabriel Antonio Paulius Velarde, Niloy Mukherjee, Noriyuki Sato, Amrita Mathuriya, Sasikanth Manipatruni, Ramamoorthy Ramesh
  • Publication number: 20230353157
    Abstract: Magnetoelectric spin-orbit logic (MESO) devices comprise a magnetoelectric switch capacitor coupled to a spin-orbit coupling structure. The logic state of the MESO device is represented by the magnetization orientation of the ferromagnet of the magnetoelectric switch capacitor and the spin-orbit coupling structure converts the magnetization orientation of the ferromagnet to an output current. MESO devices in which all or at least some of the constituent layers of the device are perovskite materials can provide advantages such as improved control over the manufacturing of MESO devices and high quality interfaces between MESO layers due to the lattice matching of perovskite materials.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Inventors: Tanay A. Gosavi, Chia-Ching Lin, Sasikanth Manipatruni, Dmitri Evgenievich Nikonov, Ian Alexander Young, Ramamoorthy Ramesh, Darrell G. Schlom, Megan E. Holtz, Rachel A. Steinhardt
  • Publication number: 20230352584
    Abstract: Technologies for a transistor with a ferroelectric gate dielectric are disclosed. In the illustrative embodiment, a transistor has a ferroelectric gate dielectric that is lattice matched to the channel of the transistor. In one embodiment, the ferroelectric polarization changes when voltage is applied and removed from a gate electrode, facilitating switching of the transistor at a lower applied voltage. In another embodiment, the ferroelectric polarization of a gate dielectric of a transistor changes when the voltage is past a positive threshold value or a negative threshold value. Such a transistor can be used as a one transistor memory cell.
    Type: Application
    Filed: May 2, 2022
    Publication date: November 2, 2023
    Inventors: Dmitri Evgenievich Nikonov, Chia-Ching Lin, Uygar E. Avci, Tanay A. Gosavi, Raseong Kim, Ian Alexander Young, Hai Li, Ashish Verma Penumatcha, Ramamoorthy Ramesh, Darrell G. Schlom
  • Publication number: 20230308102
    Abstract: An adder with first and second majority gates. For a 1-bit adder, output from a 3-input majority gate is inverted and input two times to a 5-input majority gate. Other inputs to the 5-input majority gate are same as those of the 3-input majority gate. The output of the 5-input majority gate is a sum while the output of the 3-input majority gate is the carry. Multiple 1-bit adders are concatenated to form an N-bit adder. The input signals are driven to first terminals of non-ferroelectric capacitors while the second terminals are coupled to form a majority node. Majority function of the input signals occurs on this node. The majority node is then coupled to a first terminal of a non-linear polar capacitor. The second terminal of the capacitor provides the output of the logic gate. A reset mechanism initializes the non-linear polar capacitor before addition function is performed.
    Type: Application
    Filed: May 18, 2023
    Publication date: September 28, 2023
    Applicant: Kepler Computing, Inc.
    Inventors: Sasikanth Manipatruni, Yuan-Sheng Fang, Robert Menezes, Rajeev Kumar Dokania, Guarav Thareja, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11769790
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: September 26, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, Fnu Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Publication number: 20230298905
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Application
    Filed: February 1, 2022
    Publication date: September 21, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11764790
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. In some examples, the nodes of the non-linear input capacitors are conditioned once in a while to preserve function of the multi-input majority gates.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: September 19, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Robert Menezes, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 11764190
    Abstract: Described is a packaging technology to improve performance of an AI processing system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die includes memory and the second die includes computational logic. The first die comprises a ferroelectric RAM (FeRAM) having bit-cells. Each bit-cell comprises an access transistor and a capacitor including ferroelectric material. The access transistor is coupled to the ferroelectric material. The FeRAM can be FeDRAM or FeSRAM. The memory of the first die may store input data and weight factors. The computational logic of the second die is coupled to the memory of the first die. The second die is an inference die that applies fixed weights for a trained model to an input data to generate an output. In one example, the second die is a training die that enables learning of the weights.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: September 19, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Sasikanth Manipatruni, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh
  • Patent number: 11758738
    Abstract: Approaches for integrating FE memory arrays into a processor, and the resulting structures are described. Simultaneous integrations of regions with ferroelectric (FE) cells and regions with standard interconnects are also described. FE cells include FE capacitors that include a FE stack of layers, which is encapsulated with a protection material. The protection material protects the FE stack of layers as structures for regular logic are fabricated in the same die.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: September 12, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Gaurav Thareja, Amrita Mathuriya
  • Publication number: 20230284455
    Abstract: The memory bit-cell formed using the ferroelectric capacitor results in a taller and narrower bit-cell compared to traditional memory bit-cells. As such, more bit-cells can be packed in a die resulting in a higher density memory that can operate at lower voltages than traditional memories while providing the much sought after non-volatility behavior. The pillar capacitor includes a plug that assists in fabricating a narrow pillar.
    Type: Application
    Filed: August 30, 2022
    Publication date: September 7, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Gaurav Thareja, Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11742860
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. The majority node is then coupled driver circuitry which can be any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. Bringing the majority output close to rail-to-rail voltage eliminates the high leakage problem faced from majority gates formed using linear input capacitors.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: August 29, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rafael Rios, Neal Reynolds, Ikenna Odinaka, Robert Menezes, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 11744081
    Abstract: Described are ferroelectric device film stacks which include a templating or texturing layer or material deposited below a ferroelectric layer, to enable a crystal lattice of the subsequently deposited ferroelectric layer to template off this templating layer and provide a large degree of preferential orientation despite the lack of epitaxial substrates.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: August 29, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Ramamoorthy Ramesh, Sasikanth Manipatruni, James Clarkson, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Jason Y. Wu
  • Publication number: 20230246062
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Publication number: 20230246063
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Application
    Filed: February 1, 2022
    Publication date: August 3, 2023
    Applicant: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni