Patents by Inventor Ramasamy Anbarasu

Ramasamy Anbarasu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9660493
    Abstract: The present invention relates a stator segment for an electrical machine, comprising a plurality of windings, each winding having a winding starting and ending point, and a stator yoke with a plurality of stator slots for receiving at least one stator winding, said segment having a first side and a second side. At least one winding having its starting point at the first side, and its ending point at the first side of the segment, the at least one winding is received in one or more stator slots. At least one other winding having its starting point at the second side, and its ending point at the second side of the segment, the at least one other winding is received in one or more stator slots.
    Type: Grant
    Filed: November 6, 2011
    Date of Patent: May 23, 2017
    Assignee: VESTAS WIND SYSTEM A/S
    Inventors: Ramasamy Anbarasu, Mohamed Osama, Raphael Neumann
  • Patent number: 9438155
    Abstract: Parameters of PM machines, especially for IPM machine, are known to vary by significant amounts. This affects the controllability of such machines, which may lead to reduced power loading capability and increased losses. The present invention relates to a method for PM machine inductance profile identification based on voltage mode stator flux observation which could be easily integrated to the generator start-up process in wind turbine application for both stator flux vector feedback control system and current vector feedback control system.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: September 6, 2016
    Assignee: Vestas Wind Systems A/S
    Inventors: Shu Yu Cao, Anshuman Tripathi, Swee Yee Fonn, Ramasamy Anbarasu, Amit Kumar Gupta
  • Patent number: 9096009
    Abstract: Various systems and methods for forming a polymer part with utilizing heating fluid are provided. In one embodiment of the present invention a method for forming polymer includes heating the mold apparatus with a first heat energy source comprising heating fluid to a first mold temperature, and then heating the mold apparatus with a second energy source which is different than the first energy source. The second energy source heats the mold surface to a second mold temperature greater than the first mold temperature to form the part to achieve a desired surface finish of the polymer part.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: August 4, 2015
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Ramasamy Anbarasu, Ashwit Dias, Om Prakash, Milind S. Paradkar, Daniel Wardell Sowle, Anshuman Tripathi
  • Publication number: 20150115076
    Abstract: In one aspect, a waste disposal for processing waste may generally include a housing and a motor disposed within the housing. The motor may include a stator and a rotor rotatable relative to the stator. The rotor may include a top wall disposed axially above the stator and a sidewall extending axially from the top wall. The sidewall may extend circumferentially around an outer perimeter of the stator such that the sidewall rotates relative to the stator when the rotor is rotated.
    Type: Application
    Filed: October 28, 2013
    Publication date: April 30, 2015
    Applicant: General Electric Company
    Inventors: Joseph Emil Gormley, Raymond James VanAssche, Ramasamy Anbarasu, Piniwan Thiwanka Bandara Wijekoon, Anoop Kumar Jassal
  • Patent number: 8957536
    Abstract: A wind turbine is provided. The wind turbine includes a generator, an output thereof being connectable to a power grid via a power transmission path, the power transmission path comprising a generator side converter coupled to the output of the generator, a grid side converter coupled to the power grid, and a DC link coupled between the generator side converter and the grid side converter. For diverting the generator power, a load dump arrangement is provided which includes at least one resistor, a plurality of switches, and a plurality of electrical connections which electrically connect the at least one resistor to the output of the generator and across the DC link via the plurality of switches. One common and configurable load dump is used for both converter system failures and grid failures. As compared to two separate load dumps for converter failures and grid failures, the single load dump will require a smaller space for a wind turbine.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: February 17, 2015
    Assignee: Vestas Wind Systems A/S
    Inventors: Amit Kumar Gupta, Anshuman Tripathi, Ramasamy Anbarasu, Ove Styhm, Gil Lampong Opina, Jr., Yugarajan Karuppanan, Bing Li, Shu Yu Cao
  • Patent number: 8840386
    Abstract: Various mold apparatuses and methods for forming a polymer with induction heat energy are provided. In one embodiment of the present invention, a mold apparatus for forming polymer includes a mold having a top mold portion and a top mold surface that is magnetic. The bottom mold portion of the mold includes an induction heating unit that is at least partially embedded in the bottom mold portion that provides induction heat energy to the mold. The mold apparatus is constructed and arranged to dissipate greater than about 50% of the induction heat energy in the top mold portion. The induction heating unit of the bottom portion of the mold provides rapid heating to the top mold surface to provide high surface quality polymer parts and a shorter molding cycle time while utilizing less energy.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: September 23, 2014
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Ramasamy Anbarasu, Ashwit Dias, Om Prakash, Daniel Sowle
  • Publication number: 20140091673
    Abstract: The present invention relates a stator segment for an electrical machine, comprising a plurality of windings, each winding having a winding starting and ending point, and a stator yoke with a plurality of stator slots for receiving at least one stator winding, said segment having a first side and a second side. At least one winding having its starting point at the first side, and its ending point at the first side of the segment, the at least one winding is received in one or more stator slots.
    Type: Application
    Filed: November 6, 2011
    Publication date: April 3, 2014
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Ramasamy Anbarasu, Mohamed Osama, Raphael Neumann
  • Publication number: 20130265013
    Abstract: Parameters of PM machines, especially for IPM machine, are known to vary by significant amounts. This affects the controllability of such machines, which may lead to reduced power loading capability and increased losses. The present invention relates to a method for PM machine inductance profile identification based on voltage mode stator flux observation which could be easily integrated to the generator start-up process in wind turbine application for both stator flux vector feedback control system and current vector feedback control system.
    Type: Application
    Filed: December 28, 2012
    Publication date: October 10, 2013
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Shu Yu CAO, Anshuman TRIPATHI, Swee Yee FONN, Ramasamy ANBARASU, Amit Kumar GUPTA
  • Publication number: 20110260366
    Abstract: Various mold apparatuses and methods for forming a polymer with induction heat energy are provided. In one embodiment of the present invention, a mold apparatus for forming polymer includes a mold having a top mold portion and a top mold surface that is magnetic. The bottom mold portion of the mold includes an induction heating unit that is at least partially embedded in the bottom mold portion that provides induction heat energy to the mold. The mold apparatus is constructed and arranged to dissipate greater than about 50% of the induction heat energy in the top mold portion. The induction heating unit of the bottom portion of the mold provides rapid heating to the top mold surface to provide high surface quality polymer parts and a shorter molding cycle time while utilizing less energy.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 27, 2011
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Ramasamy Anbarasu, Ashwit Dias, Om Prakash, Daniel Sowle
  • Patent number: 8021135
    Abstract: Various mold apparatuses and methods for forming a polymer with induction heat energy are provided. In one embodiment of the present invention, a mold apparatus for forming polymer includes a mold having a top mold portion and a top mold surface that is magnetic. The bottom mold portion of the mold includes an induction heating unit that is at least partially embedded in the bottom mold portion that provides induction heat energy to the mold. The mold apparatus is constructed and arranged to dissipate greater than about 50% of the induction heat energy in the top mold portion. The induction heating unit of the bottom portion of the mold provides rapid heating to the top mold surface to provide high surface quality polymer parts and a shorter molding cycle time while utilizing less energy.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: September 20, 2011
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Ramasamy Anbarasu, Ashwit Dias, Om Prakash, Daniel Sowle
  • Publication number: 20110162388
    Abstract: A magneto-caloric (MC) device is disclosed. The MC device comprise a rotor, a housing disposed about and concentric with the rotor and mechanically coupled to the rotor, wherein the housing comprises at least one axial slot, at least one set of MC elements, wherein each set of MC elements comprises at least one MC element, and at least one MC element of each set of MC elements is disposed within each of the at least one axial slots, and at least one working-segment corresponding to each set of MC elements, wherein each working-segment is disposed axially around the rotor and external to the housing, and wherein each working-segment comprises, a yoke substantially defining an inner volume comprising a first inner volume and a second inner volume, and a magnetic field production (MFP) unit magnetically coupled to the yoke and configured to provide a magnetic field within the first inner volume.
    Type: Application
    Filed: January 5, 2010
    Publication date: July 7, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jayeshkumar Jayanarayan Barve, Shishir Chandrasekhar Menon, Ramasamy Anbarasu, Pradip Radhakrishnan Subramaniam, Vijay Kumar, Sudhakar Eddula Reddy, Ravikumar Hanumantha
  • Patent number: 7959112
    Abstract: A system for detecting and classifying a wheel of a rail vehicle traveling on a railway track includes a plurality of wheel detectors coupled to one rail of the railway track and configured to detect presence of the wheel and to generate signals representative thereof. A processing system is coupled to the wheel detectors and configured to receive and process the signals. The processing system is configured to classify the wheel based on a speed independent classification value calculated based on the signals from the wheel detectors.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 14, 2011
    Assignee: Progress Rail Services Corp
    Inventors: Arvind Kumar Tiwari, Ramasamy Anbarasu, Ramesh Bhat, Somakumar Ramachandrapanicker, Vageesh Kubatoor Patil, Carlo Becheri, Stefano Orlandi, Fabio Biondi, Lorenzo Chiosi
  • Patent number: 7852988
    Abstract: An X-ray tube anode assembly and an X-ray tube assembly are disclosed that include an X-ray target and a drive assembly configured to provide an oscillatory motion to the X-ray target. The drive assembly is configured to provide an oscillatory motion to the target assembly.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: December 14, 2010
    Assignee: General Electric Company
    Inventors: Manoharan Venugopal, Anandraj Sengupta, Mandyam Rangayan Sridhar, Maheshwara Murthy, Rammohan Rao Kalluri, Thangavelu Asokan, Ramasamy Anbarasu, Pramod Kumar Pandey, Clarence Lavere Gordon, III, Mark Alan Frontera, Sunil Srinivasa Murthy, Debasish Mishra, Manoj Kumar Koyithitta Meethal, Munishwar Ahuja, Hombe Gowda
  • Publication number: 20100212327
    Abstract: A magnetic assembly having a magnetic field mechanism is proposed. The magnetic assembly includes a central limb and a top and bottom yoke. At least a first coil is disposed on a first side of one of the top and bottom yoke and at least a second coil is disposed on a second side. The magnetic assembly further includes a first magnetocaloric unit disposed on the first side between the top and bottom yoke and a second magnetocaloric unit disposed on the second side wherein the first magnetocaloric unit and the second magnetocaloric unit are alternately magnetized and demagnetized to generate thermal units.
    Type: Application
    Filed: February 25, 2009
    Publication date: August 26, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jayeshkumar Jayanarayan Barve, Ramasamy Anbarasu, Shishir Chandrasekhar Menon
  • Publication number: 20090224624
    Abstract: A rotor structure for an interior permanent magnet (IPM) electromotive machine is provided. The rotor structure includes at least one rotor lamination including a first group of slots and a second group of slots arranged to form a magnetic pole. The first group of slots may be arranged to form a magnetic flux along a direct axis of the magnetic pole resulting from the first and second group of slots. At least some of the first group of slots is arranged to receive a respective permanent magnet. The second group of slots is arranged to provide a separation for the magnetic flux from adjacent magnetic poles and lying along a quadrature axis of said magnetic pole. At least some of the second group of slots is arranged without a permanent magnet. The rotor structure further includes a magneto-mechanical barrier arranged to reduce a peak level of mechanical stress occurring by the first and/or the second group of slots and/or impede a flow of magnetic flux through the barrier.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 10, 2009
    Inventors: AJITH KUTTANNAIR KUMAR, Ramasamy Anbarasu, Anshuman Tripathi, Arvind Kumar Tiwari, Roy David Schultz, Patrick Lee Jansen, Rammohan Rao Kalluri, Shishir Chandrasekhar Menon
  • Publication number: 20090115104
    Abstract: Various systems and methods for forming a polymer part with utilizing heating fluid are provided. In one embodiment of the present invention a method for forming polymer includes heating the mold apparatus with a first heat energy source comprising heating fluid to a first mold temperature, and then heating the mold apparatus with a second energy source which is different than the first energy source. The second energy source heats the mold surface to a second mold temperature greater than the first mold temperature to form the part to achieve a desired surface finish of the polymer part.
    Type: Application
    Filed: October 27, 2008
    Publication date: May 7, 2009
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Ramasamy Anbarasu, Ashwit Dias, Om Prakash, Milind S. Paradkar, Daniel Wardell Sowle, Anshuman Tripathi
  • Publication number: 20080303194
    Abstract: Various mold apparatuses and methods for forming a polymer with induction heat energy are provided. In one embodiment of the present invention, a mold apparatus for forming polymer includes a mold having a top mold portion and a top mold surface that is magnetic. The bottom mold portion of the mold includes an induction heating unit that is at least partially embedded in the bottom mold portion that provides induction heat energy to the mold. The mold apparatus is constructed and arranged to dissipate greater than about 50% of the induction heat energy in the top mold portion. The induction heating unit of the bottom portion of the mold provides rapid heating the top mold surface to provide high surface quality polymer parts a shorter molding cycle time while utilizing less energy.
    Type: Application
    Filed: June 5, 2008
    Publication date: December 11, 2008
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Ramasamy Anbarasu, Ashwit Dias, Om Prakash, Daniel Sowle
  • Publication number: 20080149782
    Abstract: A system for detecting and classifying a wheel of a rail vehicle traveling on a railway track includes a plurality of wheel detectors coupled to one rail of the railway track and configured to detect presence of the wheel and to generate signals representative thereof. A processing system is coupled to the wheel detectors and configured to receive and process the signals. The processing system is configured to classify the wheel based on a speed independent classification value calculated based on the signals from the wheel detectors.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Inventors: Arvind Kumar Tiwari, Ramasamy Anbarasu, Ramesh Bhat, Somakumar Ramachandrapanicker, Vageesh Kubatoor Patil, Carlo Becheri, Stefano Orlandi, Fabio Biondi, Lorenzo Chiosi
  • Publication number: 20070130834
    Abstract: An electronically controlled grade crossing gate system and method. The system includes a gate arm, a gate arm moving assembly, a position sensor assembly and a controller. The gate arm moving assembly is configured to move the gate arm and the position sensor assembly is configured to sense a position of the gate arm. The position sensor assembly is a non-contact position sensor assembly. The controller is coupled to the gate arm moving assembly and the position sensor assembly and it is configured to receive an incoming command related to the gate arm. The controller activates the gate arm moving assembly in response to the incoming command and communicates with the position sensor assembly to monitor the position of the gate arm.
    Type: Application
    Filed: February 15, 2007
    Publication date: June 14, 2007
    Applicant: General Electric Company
    Inventors: Mallikarjun Kande, Vidyadhar Kottisa, David Davenport, Pradeep Vijayan, Kuna Kishore, Kunal Goray, Raju Mogaveera, Ramasamy Anbarasu
  • Patent number: 7195211
    Abstract: An electronically controlled grade crossing gate system and method. The system includes a gate arm, a gate arm moving assembly, a position sensor assembly and a controller. The gate arm moving assembly is configured to move the gate arm and the position sensor assembly is configured to sense a position of the gate arm. The position sensor assembly is a non-contact position sensor assembly. The controller is coupled to the gate arm moving assembly and the position sensor assembly and it is configured to receive an incoming command related to the gate arm. The controller activates the gate arm moving assembly in response to the incoming command and communicates with the position sensor assembly to monitor the position of the gate arm.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: March 27, 2007
    Assignee: General Electric Company
    Inventors: Mallikarjun Shivaraya Kande, Vidyadhar Kottisa, David Michael Davenport, Pradeep Vijayan, Kuna Venkat Satya Rama Kishore, Kunal Ravindra Goray, Raju Mogaveera, Ramasamy Anbarasu