Patents by Inventor Ramaswamy Mahadevan

Ramaswamy Mahadevan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200224935
    Abstract: A thermoelectric heating/cooling device may include first and second thermally conductive headers. A plurality of thermoelectric elements thermally may be coupled in parallel between the first and second thermally conductive headers. In addition, a resistive heating element may be provided on the second header, and the second header may be between the resistive heating element and the plurality of thermoelectric elements.
    Type: Application
    Filed: March 24, 2020
    Publication date: July 16, 2020
    Inventors: Paul CROCCO, Ramaswamy MAHADEVAN, Philip A. DEANE
  • Patent number: 10634396
    Abstract: A thermoelectric heating/cooling device may include first and second thermally conductive headers. A plurality of thermoelectric elements thermally may be coupled in parallel between the first and second thermally conductive headers. In addition, a resistive heating element may be provided on the second header, and the second header may be between the resistive heating element and the plurality of thermoelectric elements.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: April 28, 2020
    Assignee: LAIRD THERMAL SYSTEMS, INC.
    Inventors: Paul Crocco, Ramaswamy Mahadevan, Philip A. Deane
  • Patent number: 9601677
    Abstract: A thermoelectric structure may include a thermally conductive substrate, and a plurality of thermoelectric elements arranged on a surface of the thermally conductive substrate. Moreover, each thermoelectric element may be non-parallel and non-orthogonal with respect to the surface of the thermally conductive substrate. For example, each of thermoelectric elements may be a planar thermoelectric element, and a plane of each of the thermoelectric elements may be oriented obliquely with respect to the surface of the thermally conductive substrate.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: March 21, 2017
    Assignee: Laird Durham, Inc.
    Inventors: Edward P. Siivola, Ramaswamy Mahadevan
  • Patent number: 8525016
    Abstract: A thermoelectric device may include a thermoelectric element including a layer of a thermoelectric material and having opposing first and second surfaces. A first metal pad may be provided on the first surface of the thermoelectric element, and a second metal pad may be provided on the second surface of the thermoelectric element. In addition, the first and second metal pads may be off-set in a direction parallel with respect to the first and second surfaces of the thermoelectric element. Related methods are also discussed.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: September 3, 2013
    Assignee: Nextreme Thermal Solutions, Inc.
    Inventors: Philip A. Deane, Ramaswamy Mahadevan, Edward P. Siivola
  • Publication number: 20110220162
    Abstract: A thermoelectric structure may include a thermally conductive substrate, and a plurality of thermoelectric elements arranged on a surface of the thermally conductive substrate. Moreover, each thermoelectric element may be non-parallel and non-orthogonal with respect to the surface of the thermally conductive substrate. For example, each of thermoelectric elements may be a planar thermoelectric element, and a plane of each of the thermoelectric elements may be oriented obliquely with respect to the surface of the thermally conductive substrate.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 15, 2011
    Inventors: Edward P. Siivola, Ramaswamy Mahadevan
  • Publication number: 20110132000
    Abstract: A thermoelectric heating/cooling structure may include a heat exchanger and a heat spreader spaced apart from the heat exchanger. In addition, a plurality of spaced apart thermoelectric components may be thermally coupled in parallel between the heat exchanger and the heat spreader. More particularly, each of the thermoelectric components may include a first header adjacent the heat exchanger, a second header adjacent the heat spreader, and a plurality of thermoelectric elements thermally coupled in parallel between the first and second headers. The first headers of the thermoelectric components may be spaced apart adjacent the heat exchanger, and the second headers of the thermoelectric components may be spaced apart adjacent the heat spreader.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 9, 2011
    Inventors: Philip A. Deane, Edward P. Siivola, Paul Crocco, Ramaswamy Mahadevan
  • Publication number: 20100252087
    Abstract: A thermoelectric device may include a thermoelectric element including a layer of a thermoelectric material and having opposing first and second surfaces. A first metal pad may be provided on the first surface of the thermoelectric element, and a second metal pad may be provided on the second surface of the thermoelectric element. In addition, the first and second metal pads may be off-set in a direction parallel with respect to the first and second surfaces of the thermoelectric element. Related methods are also discussed.
    Type: Application
    Filed: March 25, 2010
    Publication date: October 7, 2010
    Inventors: Philip A. Deane, Ramaswamy Mahadevan, Edward P. Siivola
  • Publication number: 20090205696
    Abstract: An electronic device may include a heat generating component and a surface adjacent the heat generating component. A temperature of the heat generating component may be greater than a temperature of the surface adjacent the heat generating component during operation of the electronic device. A thermoelectric heat pump between the surface and the heat generating component may be configured to pump heat from a cold side of the thermoelectric heat pump adjacent the surface toward the heat generating component. Related methods are also discussed.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 20, 2009
    Inventors: David Koester, Seri Lee, Ramaswamy Mahadevan
  • Publication number: 20080264464
    Abstract: A temperature control system may include a thermoelectric device, and a controller electrically coupled to the thermoelectric device. The controller may be configured to apply an AC signal to the thermoelectric device, and to sense an electrical characteristic of the thermoelectric device using the AC signal. The controller may also be configured to generate an electrical control signal to pump heat through the thermoelectric device responsive to sensing the electrical characteristic of the thermoelectric device using the AC signal. Related methods are also discussed.
    Type: Application
    Filed: July 2, 2008
    Publication date: October 30, 2008
    Inventors: SERI LEE, JESKO VON WINDHEIM, RAMASWAMY MAHADEVAN
  • Patent number: 6760144
    Abstract: A micro-electro-mechanical device designed such that the actuating means are only mechanically coupled to the optical components. The device includes a substrate, a mirror supported above the substrate, and a rotatory actuator also supported above the substrate. The mirror and actuator are mechanically coupled via a torsional coupling hinge such that the mirror can be angled and/or tilted by electrostatically driving the rotatory actuator. Advantageously, the micro-mirrors and actuator are fabricated from the same layer during the micro-machining fabrication process. In one embodiment, the mirror is rotatable about a fixed rotation axis. In another embodiment, the mirror is freely rotatable.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: July 6, 2004
    Assignee: JDS Uniphase Corporation
    Inventors: Edward Hill, Ramaswamy Mahadevan, Vijayakumar Rudrappa Dhuler, Robert Wood
  • Publication number: 20040008400
    Abstract: A micro-electro-mechanical device designed such that the actuating means are only mechanically coupled to the optical components. The device includes a substrate, a mirror supported above the substrate, and a rotatory actuator also supported above the substrate. The mirror and actuator are mechanically coupled via a torsional coupling hinge such that the mirror can be angled and/or tilted by electrostatically driving the rotatory actuator. Advantageously, the micro-mirrors and actuator are fabricated from the same layer during the micro-machining fabrication process. In one embodiment, the mirror is rotatable about a fixed rotation axis. In another embodiment, the mirror is freely rotatable.
    Type: Application
    Filed: December 4, 2002
    Publication date: January 15, 2004
    Applicant: JDS Uniphase Corporation
    Inventors: Edward Hill, Ramaswamy Mahadevan, Vijayakumar Rudrappa Dhuler, Robert Wood
  • Patent number: 6618518
    Abstract: Optical cross-connect switches include input optical paths, output optical paths, and an array of electromechanical optical switches such as movable reflectors that are arranged in rows of the electromechanical optical switches and columns of the electromechanical optical switches, and that selectively move to couple the input optical paths to the output optical paths. Row address lines also are provided, a respective one of which is electromagnetically (i.e. electrically and/or optically) coupled to a respective row of the electromechanical optical switches. Column address lines also are provided, a respective one of which is electromagnetically coupled to a respective column of the electromechanical optical switches. If there are n2 electromechanical optical switches that couple n optical paths to n optical output paths, less than n2 row and column address lines may be provided. Preferably, 2n row and column address lines may be provided.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: September 9, 2003
    Assignee: JDS Uniphase Corporation
    Inventors: Ramaswamy Mahadevan, Vivek Agrawal
  • Patent number: 6596147
    Abstract: MEMS structures are provided that compensate for ambient temperature changes, process variations, and the like, and can be employed in many applications. These structures include an active microactuator adapted for thermal actuation to move in response to the active alteration of its temperature. The active microactuator may be further adapted to move in response to ambient temperature changes. These structures also include a temperature compensation element, such as a temperature compensation microactuator or frame, adapted to move in response to ambient temperature changes. The active microactuator and the temperature compensation element move cooperatively in response to ambient temperature changes. Thus, a predefined spatial relationship is maintained between the active microactuator and the associated temperature compensation microactuator over a broad range of ambient temperatures absent active alteration of the temperature of the active microactuator.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: July 22, 2003
    Assignee: Memscap S.A.
    Inventors: Edward Hill, Robert L. Wood, Ramaswamy Mahadevan
  • Patent number: 6590313
    Abstract: A MEMs microactuator can be positioned in an interior region of a frame having at least one opening therein, wherein the frame expands in response to a change in temperature of the frame. A load outside the frame can be coupled to the microactuator through the at least one opening. The microactuator moves relative to the frame in response to the change in temperature to remain substantially stationary relative to the substrate. Other MEMs structures, such as latches that can engage and hold the load in position, can be located outside the frame. Accordingly, in comparison to some conventional structures, temperature compensated microactuators according to the present invention can be made more compact by having the interior region of the frame free of other MEMs structures such as latches.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: July 8, 2003
    Assignee: Memscap S.A.
    Inventors: Vivek Agrawal, Robert L. Wood, Ramaswamy Mahadevan
  • Patent number: 6496351
    Abstract: MEMS devices include a substrate, an anchor attached to the substrate, and a multilayer member attached to the anchor and spaced apart from the substrate. The multilayer member can have a first portion that is remote from the anchor and that curls away from the substrate and a second portion that is adjacent the anchor that contacts the substrate. Related methods are also disclosed.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: December 17, 2002
    Assignee: JDS Uniphase Inc.
    Inventors: Edward A. Hill, Ramaswamy Mahadevan
  • Patent number: 6400550
    Abstract: A variable capacitor is provided having first and second capacitor plates, a tandem mover and an actuator. The first and second capacitor plates are positioned such that the first and second capacitor plates face one another in a spaced apart relationship. The tandem mover is configured to move the first and second capacitor plates in tandem in response to changes in ambient temperature to maintain a consistent spaced apart relationship between the capacitor plates. The actuator is then configured to vary the spaced apart relationship between the first and second capacitor plates in response to an external input. The capacitance of the variable capacitor can therefore be varied by increasing and decreasing the spaced apart relationship between the first and second capacitor plates.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: June 4, 2002
    Assignee: JDS Uniphase Corporation
    Inventors: Robert L. Wood, Vivek Agrawal, Ramaswamy Mahadevan, Edward A. Hill
  • Patent number: 6396975
    Abstract: A microelectromechanical structure capable of switching optical signals from an input fiber to one of two or more output fibers. In one embodiment, the MEMS optical cross-connect switch comprises a first microelectronic substrate having a pop-up mirror disposed on the surface of the substrate and a rotational magnetic field source, such as a variably controlled magnetic field source. The rotational magnetic field source allows for reliable actuation of the pop-up mirror from a non-reflective state to a reflective state. Additionally the invention is embodied in a MEMS optical cross-connect switch having a first microelectronic substrate having a pop-up mirror disposed on the surface of the substrate and a positioning structure disposed in a fixed positional relationship relative to the first substrate. The positioning structure may comprise a positioning structure extending from a second microelectronic substrate that is in a fixed positional relationship relative to the first microelectronic substrate.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: May 28, 2002
    Assignee: JDS Uniphase Corporation
    Inventors: Robert L. Wood, Edward A. Hill, Ramaswamy Mahadevan
  • Publication number: 20020054466
    Abstract: A variable capacitor is provided having first and second capacitor plates, a tandem mover and an actuator. The first and second capacitor plates are positioned such that the first and second capacitor plates face one another in a spaced apart relationship. The tandem mover is configured to move the first and second capacitor plates in tandem in response to changes in ambient temperature to maintain a consistent spaced apart relationship between the capacitor plates. The actuator is then configured to vary the spaced apart relationship between the first and second capacitor plates in response to an external input. The capacitance of the variable capacitor can therefore be varied by increasing and decreasing the spaced apart relationship between the first and second capacitor plates.
    Type: Application
    Filed: May 18, 2001
    Publication date: May 9, 2002
    Inventors: Robert L. Wood, Vivek Agrawal, Ramaswamy Mahadevan, Edward A. Hill
  • Patent number: 6367252
    Abstract: In embodiments of the present invention, a microelectromechanical actuator includes a beam having respective first and second ends attached to a substrate and a body disposed between the first and second ends having a sinuous shape. The body includes a portion operative to engage a object of actuation and apply a force thereto in a direction perpendicular to the beam responsive to at least one of a compressive force and a tensile force on the beam. The sinuous shape may be sinusoidal, e.g., a shape approximating a single period of a cosine curve or a single period of a sine curve. The beam may be thermally actuated or driven by another actuator. In other embodiments, a rotary actuator includes first and second beams, a respective one of which has first and second ends attached to a substrate and a body disposed between the first and second ends. Each body includes first and second oppositely inflected portions.
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: April 9, 2002
    Assignee: JDS Uniphase Corporation
    Inventors: Edward A. Hill, Vijayakumar Rudrappa Dhuler, Allen Cowen, Ramaswamy Mahadevan, Robert L. Wood
  • Patent number: 6366186
    Abstract: A MEMS electrical cross-point switch is provided that includes a microelectronic substrate, a magnetic element attached to the microelectronic substrate that is free to move in a predetermined direction in response to a magnetic field and an electrical element connected to the magnetic element for movement therewith to selectively switch electric current. In one embodiment the magnetic element and the electrical element are connected via a tethering device that acts as a platform for the magnetic and electrical elements. The electrical cross-point switch may also comprise a clamping element that serves to lock the switch in an open or closed position to circumvent the magnetic actuation of the switch.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: April 2, 2002
    Assignee: JDS Uniphase Inc.
    Inventors: Edward A. Hill, Ramaswamy Mahadevan