Patents by Inventor Ramdane Haddouche

Ramdane Haddouche has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180002729
    Abstract: This document describes biochemical pathways for producing 7-hydroxyheptanoate methyl ester and heptanoic acid heptyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase, and a monooxygenase, as well as recombinant hosts expressing one or more of such exogenous enzymes. 7-hydroxyheptanoate methyl esters and heptanoic acid heptyl esters can be enzymatically converted to pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, or 1,7-heptanediol.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 4, 2018
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes, Ramdane Haddouche
  • Publication number: 20180002704
    Abstract: The present disclosure relates to methods for more efficiently recycling reduced electron carriers in a hydrogen-oxidizing microorganism with an operable Calvin-Benson cycle; synthetic carbon fixation pathways that recycle reduced electron carriers more efficiently than the Calvin-Benson cycle, such as methods for enzymatically converting carbon dioxide to formate and assimilating the resulting formate into central carbon metabolism; methods for producing biochemical products; and recombinant hosts utilizing one or more synthetic carbon fixation pathways.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 4, 2018
    Inventors: Achuthanunni Chokkathukalam, Alex Van Eck Conradie, Ramdane Haddouche, Satnam Surae, Katherine Louise Tibbles
  • Patent number: 9816117
    Abstract: This document describes biochemical pathways for producing 6-hydroxyhexanoate methyl ester and hexanoic acid hexyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase and a monooxygenase, as well as recombinant hosts expressing one or more of such enzymes. 6-hydroxyhexanoate methyl esters and hexanoic acid hexyl ester can be enzymatically converted to adipic acid, adipate semialdehyde, 6-aminohexanoate, 6-hydroxyhexanoate, hexamethylenediamine, and 1,6-hexanediol.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: November 14, 2017
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes, Ramdane Haddouche
  • Patent number: 9777302
    Abstract: This document describes biochemical pathways for producing 5-hydroxypentanoate methyl ester and pentanoic acid pentyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase, and a monooxygenase, as well as recombinant hosts expressing one or more of such exogenous enzymes. 5-hydroxypentanoate methyl esters and pentanoic acid pentyl esters can be enzymatically converted to glutaric acid, 5-aminopentanoate, 5-hydroxypentanoate, cadaverine, or 1,5-pentanediol.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: October 3, 2017
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes, Ramdane Haddouche
  • Patent number: 9738914
    Abstract: This document describes biochemical pathways for producing 7-hydroxyheptanoate methyl ester and heptanoic acid heptyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase, and a monooxygenase, as well as recombinant hosts expressing one or more of such exogenous enzymes. 7-hydroxyheptanoate methyl esters and heptanoic acid heptyl esters can be enzymatically converted to pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, or 1,7-heptanediol.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: August 22, 2017
    Assignee: INVISTA NORTH AMERICA S.A.R.L.
    Inventors: Alex Van Eck Conradie, Adriana Leonora Botes, Ramdane Haddouche
  • Publication number: 20160152957
    Abstract: This document describes biochemical pathways for producing 6-hydroxyhexanoic acid using a monooxygenase to form a 7-hydroxyoctanoate intermediate, which can be converted to 6-hydroxyhexanoate using a polypeptide having monooxygenase, secondary alcohol dehydrogenase, or esterase activity. 6-hydroxyhexanoic acid can be enzymatically converted to adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine or 1,6-hexanediol. This document also describes recombinant hosts producing 6-hydroxyhexanoic acid as well as adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine and 1,6-hexanediol.
    Type: Application
    Filed: November 20, 2015
    Publication date: June 2, 2016
    Inventors: Adriana Leonora Botes, Alex Van Eck Conradie, Ramdane Haddouche
  • Publication number: 20160145657
    Abstract: This document describes biochemical pathways for producing 7-hydroxyheptanoic acid using a polypeptide having monooxygenase activity to form a 8-hydroxynonanoate intermediate, which can be converted to 7-hydroxyheptanoate using a polypeptide having monooxygenase activity, a polypeptide having secondary alcohol dehydrogenase activity, and a polypeptide having esterase activity. 7-hydroxyheptanoic acid can be enzymatically converted to pimelic acid, 7-aminoheptanoic acid, heptamethylenediamine or 1,7 heptanediol. This document also describes recombinant hosts producing 7-hydroxyheptanoic acid as well as pimelic acid, 7-aminoheptanoic acid, heptamethylenediamine and 1,7 heptanediol.
    Type: Application
    Filed: November 20, 2015
    Publication date: May 26, 2016
    Inventors: Adriana Leonora Botes, Alex Van Eck Conradie, Ramdane Haddouche
  • Publication number: 20150361467
    Abstract: This document describes biochemical pathways for producing 5-hydroxypentanoate methyl ester and pentanoic acid pentyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase, and a monooxygenase, as well as recombinant hosts expressing one or more of such exogenous enzymes. 5-hydroxypentanoate methyl esters and pentanoic acid pentyl esters can be enzymatically converted to glutaric acid, 5-aminopentanoate, 5-hydroxypentanoate, cadaverine, or 1,5-pentanediol.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 17, 2015
    Inventors: Adriana Leonora Botes, Alex Van Eck Conradie, Ramdane Haddouche
  • Publication number: 20150361465
    Abstract: This document describes biochemical pathways for producing 7-hydroxyheptanoate methyl ester and heptanoic acid heptyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase, and a monooxygenase, as well as recombinant hosts expressing one or more of such exogenous enzymes. 7-hydroxyheptanoate methyl esters and heptanoic acid heptyl esters can be enzymatically converted to pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, or 1,7-heptanediol.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 17, 2015
    Inventors: Adriana Leonora Botes, Alex Van Eck Conradie, Ramdane Haddouche
  • Publication number: 20150361466
    Abstract: This document describes biochemical pathways for producing 6-hydroxyhexanoate methyl ester and hexanoic acid hexyl ester using one or more of a fatty acid O-methyltransferase, an alcohol O-acetyltransferase and a monooxygenase, as well as recombinant hosts expressing one or more of such enzymes. 6-hydroxyhexanoate methyl esters and hexanoic acid hexyl ester can be enzymatically converted to adipic acid, adipate semialdehyde, 6-aminohexanoate, 6-hydroxyhexanoate, hexamethylenediamine, and 1,6-hexanediol.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 17, 2015
    Inventors: Adriana Leonora Botes, Alex Van Eck Conradie, Ramdane Haddouche
  • Publication number: 20120226059
    Abstract: The present invention concerns a method for the production of Very Long Chain Fatty Acids (VLCFA) by fermentation, comprising culturing a recombinant strain of a Yarrowia sp. comprising a heterologous gene coding for a hydroxyacyl-CoA dehydratase, under control of regulatory elements allowing expression of the said heterologous gene in the said Yarrowia sp. The invention also concerns the recombinant Yarrowia sp.
    Type: Application
    Filed: November 30, 2010
    Publication date: September 6, 2012
    Inventors: Jean-Denis Faure, Jean-Marc Nicaud, Brice Bourdenx, Ramdane Haddouche