Patents by Inventor Ramesh Neelamani

Ramesh Neelamani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9625593
    Abstract: The invention includes a method for reducing noise in migration of seismic data, particularly advantageous for imaging by simultaneous encoded source reverse-time migration (SS-RTM). One example embodiment includes the steps of obtaining a plurality of initial subsurface images; decomposing each of the initial subsurface images into components; identifying a set of components comprising one of (i) components having at least one substantially similar characteristic across the plurality of initial subsurface images, and (ii) components having substantially dissimilar characteristics across the plurality of initial subsurface images; and generating an enhanced subsurface image using the identified set of components. For SS-RTM, each of the initial subsurface images is generated by migrating several sources simultaneously using a unique random set of encoding functions. Another embodiment of the invention uses SS-RTM for velocity model building.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: April 18, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ramesh Neelamani, Partha S. Routh, Jerome R. Krebs, Anatoly Baumstein, Thomas A. Dickens, Warren S. Ross, Gopalkrishna Palacharla
  • Patent number: 9495487
    Abstract: Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: November 15, 2016
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jerome R. Krebs, John E. Anderson, Ramesh Neelamani, Charles Jing, David L. Hinkley, Thomas A. Dickens
  • Patent number: 9146329
    Abstract: Techniques are disclosed for performing time-lapse monitor surveys with sparsely sampled monitor data sets (11). An accurate 3D representation (e.g., image) of a target area (e.g., a hydrocarbon bearing subsurface reservoir) is constructed using the sparsely sampled monitor data set (e.g., seismic data set). The sparsely sampled monitor data set may be so limited that it alone is insufficient to generate an accurate 3D representation of the target area, but accuracy is achieved through use of certain external information (14). The external information may include predetermined base survey data from a first time that is used (12) to interpolate data that is not recorded in the sparsely sampled monitor data set to derive a fully sampled monitor data set that can be processed (e.g., using conventional processing techniques) for determining an accurate representation of the target area at a second time.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: September 29, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Richard T. Houck, Ramesh Neelamani
  • Patent number: 8775143
    Abstract: Method for simultaneous full-wavefield inversion of gathers of source (or receiver) encoded geophysical data to determine a physical properties model (118) for a subsurface region, especially suitable for surveys where fixed receiver geometry conditions were not satisfied in the data acquisition. Simultaneous source separation (104) is performed to lessen any effect of the measured geophysical data's not satisfying the fixed-receiver assumption. A data processing step (106) coming after the simultaneous source separation acts to conform model-simulated data (105) to the measured geophysical data (108) for source and receiver combinations that are missing in the measured geophysical data.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 8, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Partha S. Routh, Sunwoong Lee, Ramesh Neelamani, Jerome R. Krebs, Spyridon Lazaratos, Carey Marcinkovich
  • Patent number: 8538702
    Abstract: Method for identifying geologic features, such as hydrocarbon indicators, from geophysical data, such as seismic data, by taking a curvelet transform of the data. After the curvelet representation of the data is computed (350), selected geophysical data attributes and their interdependencies are extracted (355), from which geological features may be identified (360), either from attribute data volumes that are created or directly from the curvelet representation.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: September 17, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ramesh Neelamani, David R. Converse
  • Patent number: 8509028
    Abstract: The invention discloses a way to recover separated seismograms with reduced interference noise by processing vibroseis data recorded (or computer simulated) with multiple vibrators shaking simultaneously or nearly simultaneously (200). A preliminary estimate of the separated seismograms is used to obtain improved seismograms (201). The preliminary estimate is convolved with the vibrator signature and then used to update the seismogram. Primary criteria for performing the update include fitting the field data and satisfying typical criteria of noise-free seismograms (202). Alternative ways to update are disclosed, including signal extraction, modeled noise extraction, constrained optimization based separation, and penalized least-squares based separation. The method is particularly suited for removing noise caused by separating the combined record into separate records for each vibrator, and is advantageous where the number of sweeps is fewer than the number of vibrators (200).
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ramesh Neelamani, Christine E. Krohn, Jerry Krebs, Max Deffenbaugh, John Anderson
  • Publication number: 20130191090
    Abstract: Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
    Type: Application
    Filed: March 8, 2013
    Publication date: July 25, 2013
    Inventors: Jerome R. Krebs, John E. Anderson, Ramesh Neelamani, Charles Jing, David L. Hinkley, Thomas A. Dickens
  • Patent number: 8428925
    Abstract: Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: April 23, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jerome R. Krebs, John E. Anderson, Ramesh Neelamani, Charlie Jing, David Hinkley, Thomas A. Dickens, Christine E. Krohn, Peter Traynin
  • Patent number: 8352190
    Abstract: An exemplary embodiment of the present invention provides a method for interpolating seismic data. The method includes collecting seismic data of two or more types over a field (401), determining an approximation to one of the types of the seismic data (402), and performing a wave-field transformation on the approximation to form a transformed approximation (405), wherein the transformed approximation corresponds to another of the collected types of seismic data. The method may also include setting the transformed approximation to match the measured seismic data of the corresponding types at matching locations (408), performing a wave-field transformation on the transformed approximation to form an output approximation (412), and using the output approximation to obtain a data representation of a geological layer (416).
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: January 8, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Anatoly Baumstein, Ramesh Neelamani
  • Publication number: 20130003500
    Abstract: The invention includes a method for reducing noise in migration of seismic data, particularly advantageous for imaging by simultaneous encoded source reverse-time migration (SS-RTM). One example embodiment includes the steps of obtaining a plurality of initial subsurface images; decomposing each of the initial subsurface images into components; identifying a set of components comprising one of (i) components having at least one substantially similar characteristic across the plurality of initial subsurface images, and (ii) components having substantially dissimilar characteristics across the plurality of initial subsurface images; and generating an enhanced subsurface image using the identified set of components. For SS-RTM, each of the initial subsurface images is generated by migrating several sources simultaneously using a unique random set of encoding functions. Another embodiment of the invention uses SS-RTM for velocity model building.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Inventors: Ramesh Neelamani, Partha S. Routh, Jerome R. Krebs, Anatoly Baumstein, Thomas A. Dickens, Warren S. Ross, Gopalkrishna Palacharla
  • Publication number: 20120275267
    Abstract: Provided is a method for processing seismic data. One exemplary embodiment includes the steps of obtaining a plurality of initial subsurface images; decomposing each of the initial subsurface images into components; identifying a set of components comprising one of (i) components having at least one substantially similar characteristic across the plurality of initial subsurface images, and (ii) components having substantially dissimilar characteristics across the plurality of initial subsurface images; and generating an enhanced subsurface image using the identified set of components. Each of the initial subsurface images is generated using a unique random set of encoding functions.
    Type: Application
    Filed: March 26, 2012
    Publication date: November 1, 2012
    Inventors: Ramesh Neelamani, Partha S. Routh, Jerome R. Krebs, Anatoly Baumstein, Thomas A. Dickens
  • Publication number: 20120269034
    Abstract: The invention discloses a way to recover separated seismograms with reduced interference noise by processing vibroseis data recorded (or computer simulated) with multiple vibrators shaking simultaneously or nearly simultaneously (200). A preliminary estimate of the separated seismograms is used to obtain improved seismograms (201). The preliminary estimate is convolved with the vibrator signature and then used to update the seismogram. Primary criteria for performing the update include fitting the field data and satisfying typical criteria of noise-free seismograms (202). Alternative ways to update are disclosed, including signal extraction, modeled noise extraction, constrained optimization based separation, and penalized least-squares based separation. The method is particularly suited for removing noise caused by separating the combined record into separate records for each vibrator, and is advantageous where the number of sweeps is fewer than the number of vibrators (200).
    Type: Application
    Filed: June 26, 2012
    Publication date: October 25, 2012
    Inventors: Ramesh Neelamani, Christine E. Krohn, Jerry Krebs, Max Deffenbaugh, John Anderson
  • Patent number: 8280695
    Abstract: Method for adapting a template to a target data set. The template may be used to remove noise from, or interpret noise in, the target data set. The target data set is transformed (550) using a selected complex-valued, directional, multi-resolution transform (‘CDMT’) satisfying the Hubert transform property at least approximately. An initial template is selected, and it is transformed (551) using the same CDMT. Then the transformed template is adapted (560) to the transformed target data by adjusting the template's expansion coefficients within allowed ranges of adjustment so as to better match the expansion coefficients of the target data set. Multiple templates may be simultaneously adapted to better fit the noise or other component of the data that it may be desired to represent by template.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: October 2, 2012
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ramesh Neelamani, Anatoly Baumstein, Warren S. Ross
  • Patent number: 8248886
    Abstract: The invention discloses a way to recover separated seismograms with reduced interference noise by processing vibroseis data recorded (or computer simulated) with multiple vibrators shaking simultaneously or nearly simultaneously (200). A preliminary estimate of the separated seismograms is used to obtain improved seismograms (201). The preliminary estimate is convolved with the vibrator signature and then used to update the seismogram. Primary criteria for performing the update include fitting the field data and satisfying typical criteria of noise-free seismograms (202). Alternative ways to update are disclosed, including signal extraction, modeled noise extraction, constrained optimization based separation, and penalized least-squares based separation. The method is particularly suited for removing noise caused by separating the combined record into separate records for each vibrator, and is advantageous where the number of sweeps is fewer than the number of vibrators (200).
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: August 21, 2012
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Ramesh Neelamani, Christine Krohn, Jerry Krebs, Max Deffenbaugh, John Anderson
  • Patent number: 8184918
    Abstract: A method and apparatus is described for segmenting an image, for adaptively scaling an image, and for automatically scaling and cropping an image based on codestream headers data. In one embodiment, a file that can provide a header that contains multi-scale entropy distribution information on blocks of an image is received. For each block, the block is assigned to a scale from a set of scales that maximizes a cost function. The cost function is a product of a total likelihood and a prior. The total likelihood is a product of likelihoods of the blocks. The image is segmented by grouping together blocks that have been assigned equivalent scales. In one embodiment, the file represents an image in JPEG 2000 format.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: May 22, 2012
    Assignee: Ricoh Co., Ltd.
    Inventors: Kathrin Berkner, Ramesh Neelamani, Edward L. Schwartz, Martin Boliek
  • Publication number: 20120109612
    Abstract: Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
    Type: Application
    Filed: January 6, 2012
    Publication date: May 3, 2012
    Inventors: Jerome R. Krebs, John E. Anderson, Ramesh Neelamani, Charlie Jing, David Hinkley, Thomas A. Dickens, Christine E. Krohn, Peter Traynin
  • Publication number: 20120073825
    Abstract: Method for simultaneous full-wavefield inversion of gathers of source (or receiver) encoded geophysical data to determine a physical properties model (118) for a subsurface region, especially suitable for surveys where fixed receiver geometry conditions were not satisfied in the data acquisition. Simultaneous source separation (104) is performed to lessen any effect of the measured geophysical data's not satisfying the fixed-receiver assumption. A data processing step (106) coming after the simultaneous source separation acts to conform model-simulated data (105) to the measured geophysical data (108) for source and receiver combinations that are missing in the measured geophysical data.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 29, 2012
    Inventors: Partha S. Routh, Sunwoong Lee, Ramesh Neelamani, Jerome R. Krebs, Spyridon Lazaratos, Carey Marcinkovich
  • Patent number: 8121823
    Abstract: Method for reducing the time needed to perform geophysical inversion by using simultaneous encoded sources in the simulation steps of the inversion process. The geophysical survey data are prepared by encoding (3) a group of source gathers (1), using for each gather a different encoding signature selected from a set (2) of non-equivalent encoding signatures. Then, the encoded gathers are summed (4) by summing all traces corresponding to the same receiver from each gather, resulting in a simultaneous encoded gather. (Alternatively, the geophysical data are acquired from simultaneously encoded sources.) The simulation steps needed for inversion are then calculated using a particular assumed velocity (or other physical property) model (5) and simultaneously activated encoded sources using the same encoding scheme used on the measured data. The result is an updated physical properties model (6) that may be further updated (7) by additional iterations.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: February 21, 2012
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jerome R. Krebs, John E. Anderson, Ramesh Neelamani, Charlie Jing, David Hinkley, Thomas A. Dickens, Christine E. Krohn, Peter Traynin
  • Publication number: 20120014218
    Abstract: Techniques are disclosed for performing time-lapse monitor surveys with sparsely sampled monitor data sets (11). An accurate 3D representation (e.g., image) of a target area (e.g., a hydrocarbon bearing subsurface reservoir) is constructed using the sparsely sampled monitor data set (e.g., seismic data set). The sparsely sampled monitor data set may be so limited that it alone is insufficient to generate an accurate 3D representation of the target area, but accuracy is achieved through use of certain external information (14). The external information may include predetermined base survey data from a first time that is used (12) to interpolate data that is not recorded in the sparsely sampled monitor data set to derive a fully sampled monitor data set that can be processed (e.g., using conventional processing techniques) for determining an accurate representation of the target area at a second time.
    Type: Application
    Filed: December 4, 2009
    Publication date: January 19, 2012
    Applicant: ExxonMobil Upstream Research Company
    Inventors: Richard T. Houck, Ramesh Neelamani
  • Patent number: 8073625
    Abstract: A method is disclosed for combining seismic data sets. This method has application in merging data sets of different vintages, merging data sets collected using different acquisition technologies, and merging data sets acquired using different types of sensors, for example merging hydrophone and geophone measurements in ocean bottom seismic data.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: December 6, 2011
    Assignee: ExxonMobil Upstream Research Co.
    Inventors: Max Deffenbaugh, Ramesh Neelamani