Patents by Inventor RAMESH RAGHUPATHY

RAMESH RAGHUPATHY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230363824
    Abstract: A method of modeling lungs of a patient includes acquiring computed tomography data of a patient's lungs, storing a software application within a memory associated with a computer, the computer having a processor configured to execute the software application, executing the software application to differentiate tissue located within the patient's lung using the acquired CT data, generate a 3-D model of the patient's lungs based on the acquired CT data and the differentiated tissue, apply a material property to each tissue of the differentiated tissue within the generated 3-D model, generate a mesh of the 3-D model of the patient's lungs, calculate a displacement of the patient's lungs in a collapsed state based on the material property applied to the differentiated tissue and the generated mesh of the generated 3-D model, and display a collapsed lung model of the patient's lungs based on the calculated displacement of the patient's lungs.
    Type: Application
    Filed: July 18, 2023
    Publication date: November 16, 2023
    Applicant: Covidien LP
    Inventors: Joe D. Sartor, Arlen K. Ward, Francesca Rossetto, Ramesh Raghupathy, Srikara V. Peelukhana
  • Patent number: 11701179
    Abstract: A method of modeling lungs of a patient includes acquiring computed tomography data of a patient's lungs, storing a software application within a memory associated with a computer, the computer having a processor configured to execute the software application, executing the software application to differentiate tissue located within the patient's lung using the acquired CT data, generate a 3-D model of the patient's lungs based on the acquired CT data and the differentiated tissue, apply a material property to each tissue of the differentiated tissue within the generated 3-D model, generate a mesh of the 3-D model of the patient's lungs, calculate a displacement of the patient's lungs in a collapsed state based on the material property applied to the differentiated tissue and the generated mesh of the generated 3-D model, and display a collapsed lung model of the patient's lungs based on the calculated displacement of the patient's lungs.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: July 18, 2023
    Assignee: COVIDIEN LP
    Inventors: Joe D. Sartor, Arlen K. Ward, Francesca Rossetto, Ramesh Raghupathy, Srikara V. Peelukhana
  • Publication number: 20230013106
    Abstract: A header for a controller for an implantable medical device. The header includes at least one bore sized and configured to receive a corresponding connector for the implantable medical device. At least one elongate thermally conducting element is disposed within the header and proximate the at least one bore, the at least one elongate thermally conducting element being configured to conduct heat away from the at least one bore and spread heat within the header when the corresponding connector is received within the at least one bore and is communication with the implantable medical device.
    Type: Application
    Filed: July 16, 2021
    Publication date: January 19, 2023
    Inventors: Kevin R. Seifert, Lisa A. Meyer, Ramesh Raghupathy
  • Publication number: 20220023515
    Abstract: A method of cooling a mammal with an implantable blood pump. The method includes measuring a temperature of an internal controller, the internal controller being in communication with the implantable blood pump. an alert is generated if the temperature of the internal controller exceeds a predetermined temperature threshold.
    Type: Application
    Filed: July 22, 2020
    Publication date: January 27, 2022
    Inventors: Michael D. Eggen, Yong K. Cho, Avram Scheiner, Ramesh Raghupathy, Thomas W. Radtke
  • Publication number: 20220015831
    Abstract: A method of modeling lungs of a patient includes acquiring computed tomography data of a patient's lungs, storing a software application within a memory associated with a computer, the computer having a processor configured to execute the software application, executing the software application to differentiate tissue located within the patient's lung using the acquired CT data, generate a 3-D model of the patient's lungs based on the acquired CT data and the differentiated tissue, apply a material property to each tissue of the differentiated tissue within the generated 3-D model, generate a mesh of the 3-D model of the patient's lungs, calculate a displacement of the patient's lungs in a collapsed state based on the material property applied to the differentiated tissue and the generated mesh of the generated 3-D model, and display a collapsed lung model of the patient's lungs based on the calculated displacement of the patient's lungs.
    Type: Application
    Filed: July 26, 2021
    Publication date: January 20, 2022
    Inventors: Joe D. Sartor, Arlen K. Ward, Francesca Rossetto, Ramesh Raghupathy, Srikara V. Peelukhana
  • Publication number: 20210346682
    Abstract: An external coil system for a transcutaneous energy transfer system (TETS), the external coil being configured to transfer energy sufficient to power and implantable blood pump. The system includes a housing containing the external coil, the housing includes a thermal insulating base, the external coil being partially disposed within the thermal insulating base and a thermally conductive plastic, the external coil being partially disposed within the thermally conductive plastic.
    Type: Application
    Filed: May 3, 2021
    Publication date: November 11, 2021
    Inventors: David J. Peichel, Ramesh Raghupathy
  • Publication number: 20210322758
    Abstract: An implantable controller for an implantable medical device includes a metallic housing defining an enclosure. Processing circuitry is disposed within the enclosure and configured to control operation of the implantable medical device. A first aluminum encasement is disposed within the enclosure. A first piece of graphite is disposed within the aluminum encasement. A pressure sensitive adhesive is disposed between an internal surface of the metallic housing and the aluminum encasement.
    Type: Application
    Filed: March 22, 2021
    Publication date: October 21, 2021
    Inventors: Thomas J. FICK, Harold M. DYALSINGH, Brian D. KUHNLEY, Jeffrey A. SWANSON, Ramesh RAGHUPATHY, Amir ZAMIRI, Thomas W. RADTKE, Lisa A. MEYER
  • Patent number: 11071591
    Abstract: A method of modeling lungs of a patient includes acquiring computed tomography data of a patient's lungs, storing a software application within a memory associated with a computer, the computer having a processor configured to execute the software application, executing the software application to differentiate tissue located within the patient's lung using the acquired CT data, generate a 3-D model of the patient's lungs based on the acquired CT data and the differentiated tissue, apply a material property to each tissue of the differentiated tissue within the generated 3-D model, generate a mesh of the 3-D model of the patient's lungs, calculate a displacement of the patient's lungs in a collapsed state based on the material property applied to the differentiated tissue and the generated mesh of the generated 3-D model, and display a collapsed lung model of the patient's lungs based on the calculated displacement of the patient's lungs.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: July 27, 2021
    Assignee: COVIDIEN LP
    Inventors: Joe D. Sartor, Arlen K. Ward, Francesca Rossetto, Ramesh Raghupathy, Srikara V. Peelukhana
  • Publication number: 20200030033
    Abstract: A method of modeling lungs of a patient includes acquiring computed tomography data of a patient's lungs, storing a software application within a memory associated with a computer, the computer having a processor configured to execute the software application, executing the software application to differentiate tissue located within the patient's lung using the acquired CT data, generate a 3-D model of the patient's lungs based on the acquired CT data and the differentiated tissue, apply a material property to each tissue of the differentiated tissue within the generated 3-D model, generate a mesh of the 3-D model of the patient's lungs, calculate a displacement of the patient's lungs in a collapsed state based on the material property applied to the differentiated tissue and the generated mesh of the generated 3-D model, and display a collapsed lung model of the patient's lungs based on the calculated displacement of the patient's lungs.
    Type: Application
    Filed: July 26, 2018
    Publication date: January 30, 2020
    Inventors: JOE D. SARTOR, ARLEN K. WARD, FRANCESCA ROSSETTO, RAMESH RAGHUPATHY, SRIKARA V. PEELUKHANA