Patents by Inventor Ramesh S. Minisandram

Ramesh S. Minisandram has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11725267
    Abstract: A method for heat treating a powder metallurgy nickel-base alloy article comprises placing the article in a furnace at a start temperature in the furnace that is 80° C. to 200° C. below a gamma prime solvus temperature, and increasing the temperature in the furnace to a solution temperature at a ramp rate in the range of 30° C. per hour to 70° C. per hour. The article is solution treated for a predetermined time, and cooled to ambient temperature.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: August 15, 2023
    Assignee: ATI PROPERTIES LLC
    Inventors: Kevin Bockenstedt, Ramesh S. Minisandram
  • Publication number: 20220288684
    Abstract: A method of producing a metallic powder material comprises supplying feed materials to a melting hearth, and melting the feed materials on the melting hearth with a first heat source to provide a molten material having a desired chemical composition. At least a portion of the molten material is passed from the melting hearth either directly or indirectly to an atomizing hearth, where it is heated using a second heat source. At least a portion of the molten material from the atomizing hearth is passed in a molten state to an atomizing apparatus, which forms a droplet spray from the molten material. At least a portion of the droplet spray is solidified to provide a metallic powder material.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 15, 2022
    Inventors: Robin M. Forbes Jones, Matthew J. Arnold, Ramesh S. Minisandram, Arthur A. Kracke
  • Patent number: 11111552
    Abstract: A method of processing a metal alloy includes heating to a temperature in a working temperature range from a recrystallization temperature of the metal alloy to a temperature less than an incipient melting temperature of the metal alloy, and working the alloy. At least a surface region is heated to a temperature in the working temperature range. The surface region is maintained within the working temperature range for a period of time to recrystallize the surface region of the metal alloy, and the alloy is cooled so as to minimize grain growth. In embodiments including superaustenitic and austenitic stainless steel alloys, process temperatures and times are selected to avoid precipitation of deleterious intermetallic sigma-phase. A hot worked superaustenitic stainless steel alloy having equiaxed grains throughout the alloy is also disclosed.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: September 7, 2021
    Assignee: ATI PROPERTIES LLC
    Inventors: Robin M. Forbes Jones, Ramesh S. Minisandram
  • Publication number: 20200140984
    Abstract: A method for heat treating a powder metallurgy nickel-base alloy article comprises placing the article in a furnace at a start temperature in the furnace that is 80° C. to 200° C. below a gamma prime solvus temperature, and increasing the temperature in the furnace to a solution temperature at a ramp rate in the range of 30° C. per hour to 70° C. per hour. The article is solution treated for a predetermined time, and cooled to ambient temperature.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: Kevin Bockenstedt, Ramesh S. Minisandram
  • Patent number: 10563293
    Abstract: A method for heat treating a powder metallurgy nickel-base alloy article comprises placing the article in a furnace at a start temperature in the furnace that is 80° C. to 200° C. below a gamma prime solvus temperature, and increasing the temperature in the furnace to a solution temperature at a ramp rate in the range of 30° C. per hour to 70° C. per hour. The article is solution treated for a predetermined time, and cooled to ambient temperature.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: February 18, 2020
    Assignee: ATI Properties LLC
    Inventors: Kevin Bockenstedt, Ramesh S. Minisandram
  • Publication number: 20190381571
    Abstract: A method of producing a metallic powder material comprises supplying feed materials to a melting hearth, and melting the feed materials on the melting hearth with a first heat source to provide a molten material having a desired chemical composition. At least a portion of the molten material is passed from the melting hearth either directly or indirectly to an atomizing hearth, where it is heated using a second heat source. At least a portion of the molten material from the atomizing hearth is passed in a molten state to an atomizing apparatus, which forms a droplet spray from the molten material. At least a portion of the droplet spray is solidified to provide a metallic powder material.
    Type: Application
    Filed: January 30, 2019
    Publication date: December 19, 2019
    Inventors: Robin M. Forbes Jones, Matthew J. Arnold, Ramesh S. Minisandram, Arthur A. Kracke
  • Patent number: 10435775
    Abstract: Methods of refining the grain size of titanium and titanium alloys include multiple upset and draw forging. Titanium and titanium alloy workpieces are heated to a workpiece forging temperature within a workpiece forging temperature range in the alpha+beta phase field. The workpiece may comprise a starting cross-sectional dimension. The workpiece is upset forged in the workpiece forging temperature range. After upsetting, the workpiece is multiple pass draw forged in the workpiece forging temperature range. Multiple pass draw forging may comprise incrementally rotating the workpiece in a rotational direction followed by draw forging the workpiece after each incremental rotation. Incrementally rotating and draw forging the workpiece is repeated until the workpiece comprises substantially the same starting cross-sectional dimension.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: October 8, 2019
    Assignee: ATI PROPERTIES LLC
    Inventors: Robin M. Forbes Jones, John V. Mantione, Urban J. DeSouza, Jean-Philippe Thomas, Ramesh S. Minisandram, Richard L. Kennedy, R. Mark Davis
  • Patent number: 10370751
    Abstract: One embodiment of a method of refining alpha-phase grain size in an alpha-beta titanium alloy comprises working an alpha-beta titanium alloy at a first working temperature within a first temperature range in the alpha-beta phase field of the alpha-beta titanium alloy. The alloy is slow cooled from the first working temperature. On completion of working at and slow cooling from the first working temperature, the alloy comprises a primary globularized alpha-phase particle microstructure. The alloy is worked at a second working temperature within a second temperature range in the alpha-beta phase field. The second working temperature is lower than the first working temperature. The is worked at a third working temperature in a third temperature range in the alpha-beta phase field. The third working temperature is lower than the second working temperature. After working at the third working temperature, the titanium alloy comprises a desired refined alpha-phase grain size.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: August 6, 2019
    Assignee: ATI PROPERTIES LLC
    Inventors: Jean-Phillippe A. Thomas, Ramesh S. Minisandram, Robin M. Forbes Jones, John V. Mantione, David J. Bryan
  • Patent number: 10337093
    Abstract: A method of processing a non-magnetic alloy workpiece comprises heating the workpiece to a warm working temperature, open die press forging the workpiece to impart a desired strain in a central region of the workpiece, and radial forging the workpiece to impart a desired strain in a surface region of the workpiece. In a non-limiting embodiment, after the steps of open die press forging and radial forging, the strain imparted in the surface region is substantially equivalent to the strain imparted in the central region. In another non-limiting embodiment, the strain imparted in the central and surface regions are in a range from 0.3 inch/inch to 1 inch/inch, and there exists no more than a 0.5 inch/inch difference in strain of the central region compared with the strain of the surface region of the workpiece. An alloy forging processed according to methods described herein also is disclosed.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: July 2, 2019
    Assignee: ATI PROPERTIES LLC
    Inventors: Robin M. Forbes Jones, George J. Smith, Jr., Jason P. Floder, Jean-Philippe A. Thomas, Ramesh S. Minisandram
  • Publication number: 20190015890
    Abstract: A forging die heating or preheating apparatus comprises a burner head comprising a plurality of flame ports. The burner head is oriented to compliment an orientation of at least a region of a forging surface of a forging die and is configured to receive and combust a supply of an oxidizing gas and a supply of a fuel and produce flames at the flame ports. The plurality of flame ports are configured to impinge the flames onto the forging surface of the forging die to substantially uniformly heat at least the region of the forging surface of the forging die.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 17, 2019
    Inventors: Urban J. DeSouza, Robin M. Forbes Jones, Billy B. Hendrick, JR., Alonzo L. Liles, Ramesh S. Minisandram, Sterry A. Shaffer
  • Patent number: 10105749
    Abstract: A forging die heating or preheating apparatus comprises a burner head comprising a plurality of flame ports. The burner head is oriented to compliment an orientation of at least a region of a forging surface of a forging die and is configured to receive and combust a supply of an oxidizing gas and a supply of a fuel and produce flames at the flame ports. The plurality of flame ports are configured to impinge the flames onto the forging surface of the forging die to substantially uniformly heat at least the region of the forging surface of the forging die.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: October 23, 2018
    Assignee: ATI PROPERTIES LLC
    Inventors: Urban J. DeSouza, Robin M. Forbes Jones, Billy B. Hendrick, Jr., Alonzo L. Liles, Ramesh S. Minisandram, Sterry A. Shaffer
  • Publication number: 20170321313
    Abstract: One embodiment of a method of refining alpha-phase grain size in an alpha-beta titanium alloy comprises working an alpha-beta titanium alloy at a first working temperature within a first temperature range in the alpha-beta phase field of the alpha-beta titanium alloy. The alloy is slow cooled from the first working temperature. On completion of working at and slow cooling from the first working temperature, the alloy comprises a primary globularized alpha-phase particle microstructure. The alloy is worked at a second working temperature within a second temperature range in the alpha-beta phase field. The second working temperature is lower than the first working temperature. The is worked at a third working temperature in a third temperature range in the alpha-beta phase field. The third working temperature is lower than the second working temperature. After working at the third working temperature, the titanium alloy comprises a desired refined alpha-phase grain size.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 9, 2017
    Inventors: Jean-Phillippe A. Thomas, Ramesh S. Minisandram, Robin M. Forbes Jones, John V. Mantione, David J. Bryan
  • Patent number: 9777361
    Abstract: One embodiment of a method of refining alpha-phase grain size in an alpha-beta titanium alloy comprises working an alpha-beta titanium alloy at a first working temperature within a first temperature range in the alpha-beta phase field of the alpha-beta titanium alloy. The alloy is slow cooled from the first working temperature. On completion of working at and slow cooling from the first working temperature, the alloy comprises a primary globularized alpha-phase particle microstructure. The alloy is worked at a second working temperature within a second temperature range in the alpha-beta phase field. The second working temperature is lower than the first working temperature. The is worked at a third working temperature in a third temperature range in the alpha-beta phase field. The third working temperature is lower than the second working temperature. After working at the third working temperature, the titanium alloy comprises a desired refined alpha-phase grain size.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 3, 2017
    Assignee: ATI PROPERTIES LLC
    Inventors: Jean-Phillippe A. Thomas, Ramesh S. Minisandram, Robin M. Forbes Jones, John V. Mantione, David J. Bryan
  • Publication number: 20170159162
    Abstract: A method for heat treating a powder metallurgy nickel-base alloy article comprises placing the article in a furnace at a start temperature in the furnace that is 80° C. to 200° C. below a gamma prime solvus temperature, and increasing the temperature in the furnace to a solution temperature at a ramp rate in the range of 30° C. per hour to 70° C. per hour. The article is solution treated for a predetermined time, and cooled to ambient temperature.
    Type: Application
    Filed: December 7, 2015
    Publication date: June 8, 2017
    Inventors: Kevin Bockenstedt, Ramesh S. Minisandram
  • Publication number: 20170050234
    Abstract: A system and method of processing an alloy ingot or other alloy workpiece to reduce thermal cracking and reduce friction between the workpiece and the forging die may generally comprise positioning a multi-layer pad between the workpiece and the forging die. An article for processing an alloy ingot or other alloy workpiece to reduce thermal cracking also is disclosed. The present disclosure also is directed to an alloy workpieces processed according to the methods described herein, and to articles of manufacture including or made from alloy workpieces made according to these methods.
    Type: Application
    Filed: November 7, 2016
    Publication date: February 23, 2017
    Inventors: Anthony Banik, Ramesh S. Minisandram, Christopher M. O'Brien
  • Patent number: 9539640
    Abstract: A casting system, apparatus, and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: January 10, 2017
    Assignee: ATI Properties LLC
    Inventors: Evan H. Copland, Matthew J. Arnold, Ramesh S. Minisandram
  • Patent number: 9539636
    Abstract: A system and method of processing an alloy ingot or other alloy workpiece to reduce thermal cracking and reduce friction between the workpiece and the forging die may generally comprise positioning a multi-layer pad between the workpiece and the forging die. An article for processing an alloy ingot or other alloy workpiece to reduce thermal cracking also is disclosed. The present disclosure also is directed to an alloy workpieces processed according to the methods described herein, and to articles of manufacture including or made from alloy workpieces made according to these methods.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 10, 2017
    Assignee: ATI Properties LLC
    Inventors: Anthony Banik, Ramesh S. Minisandram, Christopher M. O'Brien
  • Patent number: 9533346
    Abstract: Processes and methods related to producing, processing, and hot working alloy ingots are disclosed. An alloy ingot is formed including an inner ingot core and an outer layer metallurgically bonded to the inner ingot core. The processes and methods are characterized by a reduction in the incidence of surface cracking of the alloy ingot during hot working.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: January 3, 2017
    Assignee: ATI Properties LLC
    Inventor: Ramesh S. Minisandram
  • Publication number: 20160332232
    Abstract: A method of producing a metallic powder material comprises supplying feed materials to a melting hearth, and melting the feed materials on the melting hearth with a first heat source to provide a molten material having a desired chemical composition. At least a portion of the molten material is passed from the melting hearth either directly or indirectly to an atomizing hearth, where it is heated using a second heat source. At least a portion of the molten material from the atomizing hearth is passed in a molten state to an atomizing apparatus, which forms a droplet spray from the molten material. At least a portion of the droplet spray is solidified to provide a metallic powder material.
    Type: Application
    Filed: May 14, 2015
    Publication date: November 17, 2016
    Inventors: Robin M. Forbes Jones, Matthew J. Arnold, Ramesh S. Minisandram, Arthur A. Kracke
  • Publication number: 20160279699
    Abstract: A casting system, apparatus, and method. The casting system can include an energy source and a hearth, which can have a tapered cavity. The tapered cavity can have a first end portion and a second end portion, and the tapered cavity can narrow between the first and second end portions. Further, the tapered cavity can have an inlet at the first end portion that defines an inlet capacity, and one or more outlets at the second end portion that define an outlet capacity. Where the cavity has a single outlet, the outlet capacity can be less than the inlet capacity. Where the cavity has multiple outlets, the combined outlet capacity can match the inlet capacity. Further, the cross-sectional area of the tapered cavity near the inlet can be similar to the cross-sectional area of the inlet.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventors: Evan H. Copland, Matthew J. Arnold, Ramesh S. Minisandram