Patents by Inventor Rameshwar Nath Bhargava

Rameshwar Nath Bhargava has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7993541
    Abstract: The present application is directed to the preparation and use of a class of nanoparticles that contain a single Quantum Confined dopant. A QCA nanocrystal comprises of a plurality of host atoms in a nanocrystal of a size of less than 10 nm with a single atom of a dopant (or activator). This single QCA dopant, when confined, becomes polarized and creates a large magnetic-moment in a nanosize host that contains atoms of unpaired spins. The quantum confined atom (QCA) which is now pinned, triggers the alignment of the host atoms resulting in nanosize magnetic domain. Engineering of nanomagnets based on QCA nanoparticles can be used in different applications such as: sensors, drug delivery, bio-tagging, cell/DNA tagging, magnetic memories and others.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: August 9, 2011
    Assignee: Nanocrystals Technology LP
    Inventors: Rameshwar Nath Bhargava, Haranath Divi, Adosh Mehta
  • Patent number: 7175778
    Abstract: The present application is directed to the preparation and use of a class of nanoparticles called Quantum Confined Atoms or QCA's. A QCA is a particle of material comprising a plurality of host atoms in a nanoparticle of a size of less than 10 nm with a single atom of a dopant (or activator) confined within. The QCA's have unique luminescent and optical properties and thus can act as a very efficient nanophosphor which generate polarized light and can operate as a laser and a nanomagnet. An anti-agglomeration coating surrounding the nanoparticles can prevent clumping and loss of the enhanced properties.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: February 13, 2007
    Assignee: Nanocrystals Technology LP
    Inventors: Rameshwar Nath Bhargava, Vishal Chhabra
  • Patent number: 6734465
    Abstract: A photonic structure for “white” light generation by phosphors under the excitation of a LED. The photonic structure mounts the LED and an optically transparent matrix having dispersed therein phosphors which will emit light under the excitation of the radiation of the LED. The transparent matrix may include nanoparticles for matching the index of refraction of the material of the matrix to that of the light generating phosphors. The matrix material may be readily formed by molding and formed into a variety of shapes including lenses for focusing the emitted light. A large number of the photonic structures may be arranged on a substrate to provide even illumination or other purposes. The phosphors dispersed in the matrix are preferably nanocrystalline.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: May 11, 2004
    Assignee: Nanocrystals Technology LP
    Inventors: Nikhil R. Taskar, Rameshwar Nath Bhargava
  • Patent number: 6674837
    Abstract: An X-ray imaging system utilizing a pixelated X-ray source and a X-ray imaging detector operated synchronously. The imaging system may be used in industrial and medical applications. The X-ray source and X-ray detector are synchronized such that a corresponding area of the X-ray detector is activated when the corresponding area of the X-ray source is emitting X-rays. Synchronized and adaptive emission and detection of the X-rays results in scatter rejection, improved image quality, and optimum exposure and dose reduction.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: January 6, 2004
    Assignee: Nan Crystal Imaging Corporation
    Inventors: Nikhil R. Taskar, Rameshwar Nath Bhargava, Paul J. Patt
  • Patent number: 6534772
    Abstract: A microchannel phosphor screen for converting radiation, such as X-rays, into visible light. The screen includes a planar surface, which can be formed from glass, silicon or metal, which has etched therein a multiplicity of closely spaced microchannels having diameters of the order of 40 microns or less. Deposited within each of the microchannels is a multiplicity of phosphors which emit light when acted upon by radiation. The dimensions of the microchannel and the phosphors and the relationship between the microchannels and the phosphors is optimized so that the light output compares favorably with lower resolution non microchannel based scintillation screens. A photomultiplier can be integrated with the X-ray detector so as to provide an enhanced output for use with low level X-ray of for cine or fluoroscopy applications.
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: March 18, 2003
    Assignee: Nanocrystal Imaging Corp.
    Inventors: Vishal Chhabra, Rameshwar Nath Bhargava, Dennis Gallagher, Samuel P. Herko, Bharati S. Kulkarni, Nikhil R. Taskar, Aleksey Yekimov
  • Patent number: 6452184
    Abstract: A composite phosphor screen for converting radiation, such as X-rays, into visible light. The screen includes a planar surface, which can be formed from glass, silicon or metal, which has etched therein a multiplicity of closely spaced microchannels having diameters of the order of 10 microns or less. Deposited within each of the microchannels is a multiplicity of phosphors which emit light when acted upon by radiation. A photomultiplier, which may be microchannel based, is integrated with the X-ray detector so as to provide an enhanced output for use with low level X-ray of for cine or fluoroscopy applications. The walls of the microchannels and/or the substrate surfaces include dielectric stack based light reflective coatings.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: September 17, 2002
    Assignee: Nanocrystal Imaging Corp.
    Inventors: Nikhil R. Taskar, John Victor D. Veliadis, Vishal Chhabra, Bharail Kulkarni, Neeta Pandit, Rameshwar Nath Bhargava, Roger Delano
  • Patent number: 6300640
    Abstract: A composite phosphor screen for converting radiation, such as X-rays, into visible light. The screen includes a planar surface, which can be formed from glass, silicon or metal, which has etched therein a multiplicity of closely spaced microchannels having diameters of the order of 10 microns or less. Deposited within each of the microchannels is a multiplicity of phosphors which emit light when acted upon by radiation. The walls of the microchannels and/or the substrate surfaces include light reflective coatings so as to reflect the light emitted by the phosphors to the light collecting devices, such as film or an electronic detector. The coatings can be either radiation transparent or filtering/attenuating depending on the particular application.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: October 9, 2001
    Assignee: Nanocrystal Imaging Corporation
    Inventors: Rameshwar Nath Bhargava, Nikhil R. Taskar, Vishal Chhabra, John Victor D. Veliadis
  • Patent number: 6036886
    Abstract: A process for the production of metal oxide nanocrystals activated with a rare earth element, which are useful as phosphors. The nanocrystal oxides are produced by a micellar microemulsion process. In the process an aqueous solutions of the host and activator is prepared and added to a mixture of oil and a micelle forming surfactant and cosurfactant to form a first water in oil microemulsion. An aqueous solution of a hydroxide containing compound is added to a second mixture of oil and a micelle forming surfactant and cosurfactant to form a second water in oil microemulsion. The two microemulsions are added together which cause the micelle units to coalesce and decoalesce and to form a nanocrystalline hydroxide compound of the host and activator. The solution is washed and treated so as to remove byproducts. Thereafter the hydroxide compound is converted to an nanocrystalline activated oxide.
    Type: Grant
    Filed: July 29, 1998
    Date of Patent: March 14, 2000
    Assignee: Nanocrystals Technology L.P.
    Inventors: Vishal Chhabra, Bharati S. Kulkarni, Rameshwar Nath Bhargava
  • Patent number: 5952665
    Abstract: A composite phosphor screen for converting radiation, such as X-rays, into visible light. The screen includes a planar surface, which can be formed from glass, silicon or metal, which has etched therein a multiplicity of closely spaced nanochannels having diameters of the order of 5 microns or less. Deposited within each of the nanochannels is a multiplicity of nanocrystalline phosphors, having diameters of less than 100 nanometers and preferably less than 10 nanometers, which emit light when acted upon by radiation. The walls of the nanochannels are arranged to reflect the light emitted by the nanophoshors down the nanochannels to suitable light collecting device such as film or an electronic device. This minimizes light scattering and increases light collection efficiency.
    Type: Grant
    Filed: November 28, 1997
    Date of Patent: September 14, 1999
    Assignee: Nanocrystals Technology L.P.
    Inventor: Rameshwar Nath Bhargava