Patents by Inventor Ramgopal Darolia

Ramgopal Darolia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7357958
    Abstract: Methods for depositing an overlay coating on articles intended for use in hostile thermal environments. The coating has a predominantly gamma prime-phase nickel aluminide (Ni3Al) composition suitable for use as an environmental coating and as a bond coat of a thermal barrier coating system. The coating further contains at least one platinum group metal, preferably chromium, optionally one or more reactive elements, and optionally silicon. The coating is deposited by a process that entails forming a platinum group metal layer and at least one separate layer of other constituents of the coating, and then performing a diffusion heat treatment to yield the coating.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: April 15, 2008
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Brett Allen Rohrer Boutwell, Mark Daniel Gorman
  • Patent number: 7351482
    Abstract: Zirconia-containing ceramic compositions that are capable of providing thermal barrier coatings wherein the zirconia is stabilized in the cubic crystalline phase. These compositions comprise at least about 50 mole % zirconia and a stabilizing amount up to about 49 mole % of a stabilizer component comprising: (1) a first metal oxide selected from the group consisting of ytterbia, neodymia, mixtures of ytterbia and neodymia, mixtures of ytterbia and lanthana, mixtures of neodymia and lanthana, and mixtures of ytterbia, neodymia and lanthana in an amount of from about 5 to about 49 mole % of the composition; and (2) a second metal oxide selected from the group consisting of yttria, calcia, ceria, scandia, magnesia, india and mixtures thereof in an amount of about 4 mole % or less of the composition. The ceramic composition further comprises one or more of a third metal oxide selected from the group consisting of: (a) hafnia in an amount from about 0.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: April 1, 2008
    Assignee: General Electric Company
    Inventors: Brett Allen Boutwell, Mark Daniel Gorman, Irene Spitsberg, Ramgopal Darolia, Robert William Bruce, Venkat Subramaniam Venkataramani
  • Patent number: 7335429
    Abstract: A coating and coating process for incorporating surface features on an air-cooled substrate surface of a component for the purpose of promoting heat transfer from the component. The coating process generally comprises depositing a first metallic coating material on the surface of the component using a first set of coating conditions to form a first environmental coating layer, and then depositing a second metallic coating material using a second set of coating conditions that differ from the first set, such that an outer environmental coating layer is formed having raised surface features that cause the surface of the outer environmental coating layer to be rougher than the surface of the first environmental coating layer.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: February 26, 2008
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Robert Edward Schafrik, Ramgopal Darolia, Joseph David Rigney
  • Patent number: 7326441
    Abstract: A coating and process for depositing the coating on a substrate. The coating is a nickel aluminide overlay coating of predominantly the beta (NiAl) and gamma-prime (Ni3Al) intermetallic phases, and is suitable for use as an environmental coating and as a bond coat for a thermal barrier coating (TBC). The coating can be formed by depositing nickel and aluminum in appropriate amounts to yield the desired beta+gamma prime phase content. Alternatively, nickel and aluminum can be deposited so that the aluminum content of the coating exceeds the appropriate amount to yield the desired beta+gamma prime phase content, after which the coating is heat treated to diffuse the excess aluminum from the coating into the substrate to yield the desired beta+gamma prime phase content.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: February 5, 2008
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Joseph David Rigney, Gillion Herman Marijnissen, Eric Richard Irma Carolus Vergeldt, Annejan Bernard Kloosterman
  • Patent number: 7318955
    Abstract: Thermal barrier coating (TBC) and a method of depositing a TBC having a modulated columnar microstructure that exhibits increased impact resistance. The TBC is deposited to have a columnar microstructure in which columns extend from a substrate surface. The columns having inner regions contacting the surface, outer regions near an outermost surface of the TBC, and interior regions therebetween. The inner regions of the columns are substantially normal to the substrate surface and at least one of the interior and outer regions of the columns are nonaligned with its respective inner regions, so that the columns of the columnar microstructure are continuous but modulated between the inner and outer regions to reduce tensile stresses within the columns resulting from particle impact.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: January 15, 2008
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Brett Allen Rohrer Boutwell, Brian Thomas Hazel, Bangalore Aswatha Nagaraj, Joseph David Rigney, Roger D. Wustman
  • Publication number: 20070298277
    Abstract: A high pressure turbine component for use in a gas turbine engine and a method for coating a high pressure turbine component. The gas turbine engine turbine component is coated with an amorphous phosphate-containing coating disposed on a surface of the component. The coating has a thickness of from about 0.10 microns to about 10 microns and provides resistance to oxidation and hot corrosion at temperature greater than about 1000° F.
    Type: Application
    Filed: June 21, 2006
    Publication date: December 27, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ramgopal DAROLIA, Brian T. HAZEL, Andrew J. SKOOG
  • Publication number: 20070292710
    Abstract: According to an embodiment of the invention, a repaired component is disclosed. The repaired component comprises an engine run component having a base metal substrate, a portion of the base metal substrate between about 1-3 mils in thickness and an overlying bond coat having been removed to create a remaining base metal substrate of reduced thickness. The repaired component further comprises a lower growth environmental bond coating comprising an alloy having an aluminum content of about 10-60 atomic percent applied to the remaining base metal substrate so that upon subsequent repair of the component, less than about 1-3 mils in thickness of the remaining base metal substrate is removed because of less environmental coating growth into the substrate than the prior bond coat. Advantageously, the repaired component has extended component life and increased repairability.
    Type: Application
    Filed: November 28, 2006
    Publication date: December 20, 2007
    Inventors: Joseph Rigney, Ramgopal Darolia
  • Patent number: 7291403
    Abstract: A TBC system suitable for protecting the surface of a substrate subjected to a hostile thermal environment. The TBC system comprises a bond coat on the substrate surface, an alumina scale on the bond coat, and a multilayer TBC comprising a thermal-sprayed first ceramic layer on the alumina scale and a thermal-sprayed second ceramic layer overlying the first ceramic layer. The first ceramic layer consists essentially of partially stabilized zirconia so as to comprise the tetragonal and cubic phases of zirconia. The second ceramic layer consists essentially of fully stabilized zirconia so as to consist essentially of the cubic phase of zirconia. The second ceramic layer is also characterized by having vertical microcracks that extend through the thickness thereof. The second ceramic layer is thicker and more erosion resistant than the first ceramic layer.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: November 6, 2007
    Assignee: General Electric Company
    Inventors: Bangalore A. Nagaraj, Ramgopal Darolia
  • Patent number: 7288328
    Abstract: An article for use in hostile thermal environments, such as a component of a gas turbine engine. The article includes a nickel-base superalloy substrate that is prone to formation of a deleterious secondary reaction zone (SRZ), and an overlay coating having a predominantly gamma prime-phase nickel aluminide (Ni3Al) composition suitable for use as an environmental coating, including a bond coat for a thermal barrier coating. The coating comprises a chromium-containing nickel aluminide intermetallic overlay coating of predominantly the gamma prime phase, in which aluminum is present in the coating in an amount approximately equal to the aluminum content of the superalloy substrate so as to inhibit diffusion of aluminum from the overlay coating into the superalloy substrate.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: October 30, 2007
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, William Scott Walston
  • Patent number: 7264888
    Abstract: An overlay coating for articles used in hostile thermal environments. The coating has a predominantly gamma prime-phase nickel aluminide (Ni3Al) composition suitable for use as an environmental coating and as a bond coat for a thermal barrier coating. The coating has a composition of, by weight, at least 6% to about 15% aluminum, about 2% to about 5% chromium, optionally one or more reactive elements in individual or combined amounts of up to 4%, optionally up to 2% silicon, optionally up to 60% of at least one platinum group metal, and the balance essentially nickel. A thermal-insulating ceramic layer may be deposited on the coating.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: September 4, 2007
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Joseph David Rigney, William Scott Walston
  • Patent number: 7250225
    Abstract: An intermetallic composition suitable for use as an environmentally-protective coating on surfaces of components used in hostile thermal environments, including the turbine, combustor and augmentor sections of a gas turbine engine. The coating contains the gamma-prime (Ni3Al) nickel aluminide intermetallic phase and either the beta (NiAl) nickel aluminide intermetallic phase or the gamma solid solution phase. The coating has an average aluminum content of 14 to 30 atomic percent and an average platinum-group metal content of at least 1 to less than 10 atomic percent, the balance of the coating being nickel, incidental impurities, and optionally hafnium.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: July 31, 2007
    Assignee: General Electric Company
    Inventors: Brian Thomas Hazel, Ramgopal Darolia, Brett Allen Rohrer Boutwell, David John Wortman
  • Patent number: 7250224
    Abstract: A coating system and coating method for damping vibration in an airfoil of a rotating component of a turbomachine. The coating system includes a metallic coating on a surface of the airfoil, and a ceramic coating overlying the metallic coating. The metallic coating contains metallic particles dispersed in a matrix having a metallic and/or intermetallic composition. The metallic particles are more ductile than the matrix, and have a composition containing silver and optionally tin. The method involves ion plasma cleaning the surface of the airfoil before depositing the metallic coating and then the ceramic coating.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: July 31, 2007
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Matthew Mark Weaver, Dennis Martin Corbly, Boris Alexeevich Movchan, Anatolii Ivanovich Ustinov
  • Patent number: 7247393
    Abstract: An intermetallic composition suitable for use as an environmentally-protective coating on surfaces of components used in hostile thermal environments, including the turbine, combustor and augmentor sections of a gas turbine engine. The coating contains the gamma-prime (Ni3Al) nickel aluminide intermetallic phase and either the beta (NiAl) nickel aluminide intermetallic phase or the gamma solid solution phase. The coating has an average aluminum content of 14 to 30 atomic percent and an average platinum-group metal content of at least 1 to less than 10 atomic percent, the balance of the coating being nickel, one or more of chromium, silicon, tantalum, and cobalt, optionally one or more of hafnium, yttrium, zirconium, lanthanum, and cerium, and incidental impurities.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: July 24, 2007
    Assignee: General Electric Company
    Inventors: Brian Thomas Hazel, Ramgopal Darolia, Brett Allen Rohrer Boutwell, David John Wortman
  • Patent number: 7244467
    Abstract: A process for forming a beta-phase nickel aluminide (NiAl) overlay coating that is suitable for use as a bond coat for a thermal barrier coating (TBC). The overlay coating is deposited by a method that produces a generally columnar grain structure in which grains extend through the coating such that at least some grain boundaries are open at the coating surface. The coating is then peened with a particulate media, followed by heating the overlay coating to a temperature sufficient to cause the overlay coating to recrystallize and form new grain boundaries that are not open to the outer surface of the coating and significantly less susceptible to accelerated oxidation than the original grain boundaries. The particulate media is formed of a composition containing nickel and aluminum, such that an oxide scale that forms on the surface of the coating after the peening operation is substantially free of deleterious oxide compounds, notably iron-containing spinels.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: July 17, 2007
    Assignee: General Electric Company
    Inventors: Theodore Robert Grossman, Ramgopal Darolia, Joseph David Rigney
  • Publication number: 20070160775
    Abstract: A PVD process and apparatus for depositing a coating from multiple sources of materials with different vapor pressures. The process entails forming molten pools of different first and second materials in a coating chamber of the apparatus, supporting an article within the chamber, and evaporating the molten pools with an energy beam to deposit a coating on the article with a controlled composition that contains at least a first metal and a relatively lesser amount of at least one reactive metal having a lower vapor pressure than the first metal. The first material contains at least the first metal, and the second material contains the reactive metal and at least a second metal. The second and reactive metals are combined to cause the second material to have a lower melting temperature and wider melting range than the reactive metal.
    Type: Application
    Filed: January 10, 2006
    Publication date: July 12, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Gillion Marijnissen, Eric Vergeldt, Joseph Rigney, Annejan Kloosterman, Ramgopal Darolia
  • Publication number: 20070160859
    Abstract: A coating applied as a two layer system. The outer layer is an oxide of a group IV metal selected from the group consisting of zirconium oxide, hafnium oxide and combinations thereof, which are doped with an effective amount of a lanthanum series oxide. These metal oxides doped with a lanthanum series addition comprises a high weight percentage of the outer coating. As used herein, lanthanum series means an element selected from the group consisting of lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) and combinations thereof, and lanthanum series oxides are oxides of these elements. When the zirconium oxide is doped with an effective amount of a lanthanum series oxide, a dense reaction layer is formed at the interface of the outer layer of TBC and the CMAS. This dense reaction layer prevents CMAS infiltration below it.
    Type: Application
    Filed: January 6, 2006
    Publication date: July 12, 2007
    Applicant: General Electric Company
    Inventors: Ramgopal Darolia, Bangalore A. Nagaraj, Douglas G. Konitzer, Mark D. Gorman, Ming Fu
  • Publication number: 20070141367
    Abstract: A thermal barrier coating (TBC) for a component intended for use in a hostile environment, such as a component of a gas turbine engine. The TBC exhibits improved impact and erosion resistance as a result of being a composite material consisting essentially of particles of a ceramic reinforcement material dispersed in a ceramic matrix material. The ceramic reinforcement material has a yield strength greater than the ceramic matrix material at about 1100° C., and the particles of the ceramic reinforcement material have an average maximum dimension of greater than five micrometers.
    Type: Application
    Filed: December 16, 2005
    Publication date: June 21, 2007
    Applicant: General Electric Company
    Inventors: Ramgopal Darolia, Brian Hazel
  • Patent number: 7208232
    Abstract: A coating suitable for use as an environmentally-protective coating on surfaces of components used in hostile thermal environments, including the turbine, combustor and augmentor sections of a gas turbine engine. The coating is used in a coating system deposited on a substrate formed of a superalloy material. The coating contacts a surface of the superalloy substrate and is formed of a coating material having a tensile strength of more than 50% of the superalloy material. The coating material is predominantly at least one metal chosen from the group consisting of platinum, rhodium, palladium, and iridium, and has sufficient strength to significantly contribute to the strength of the component on which the coating is deposited.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: April 24, 2007
    Assignee: General Electric Company
    Inventors: Mark Daniel Gorman, Ramgopal Darolia
  • Publication number: 20070071995
    Abstract: An intermetallic composition suitable for use as an environmentally-protective coating on surfaces of components used in hostile thermal environments, including the turbine, combustor and augmentor sections of a gas turbine engine. The coating contains the gamma-prime (Ni3Al) nickel aluminide intermetallic phase and either the beta (NiAl) nickel aluminide intermetallic phase or the gamma solid solution phase. The coating has an average aluminum content of 14 to 30 atomic percent and an average platinum-group metal content of at least 1 to less than 10 atomic percent, the balance of the coating being nickel, incidental impurities, and optionally hafnium.
    Type: Application
    Filed: September 26, 2005
    Publication date: March 29, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Brian Hazel, Ramgopal Darolia, Brett Boutwell, David Wortman
  • Publication number: 20070071996
    Abstract: An intermetallic composition suitable for use as an environmentally-protective coating on surfaces of components used in hostile thermal environments, including the turbine, combustor and augmentor sections of a gas turbine engine. The coating contains the gamma-prime (Ni3Al) nickel aluminide intermetallic phase and either the beta (NiAl) nickel aluminide intermetallic phase or the gamma solid solution phase. The coating has an average aluminum content of 14 to 30 atomic percent and an average platinum-group metal content of at least 1 to less than 10 atomic percent, the balance of the coating being nickel, one or more of chromium, silicon, tantalum, and cobalt, optionally one or more of hafnium, yttrium, zirconium, lanthanum, and cerium, and incidental impurities.
    Type: Application
    Filed: September 26, 2005
    Publication date: March 29, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Brian Hazel, Ramgopal Darolia, Brett Boutwell, David Wortman