Patents by Inventor Ramon Gonzalez

Ramon Gonzalez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913049
    Abstract: An engineered microorganism(s) with novel pathways for the conversion of short-chain hydrocarbons to fuels and chemicals (e.g. carboxylic acids, alcohols, hydrocarbons, and their alpha-, beta-, and omega-functionalized derivatives) is described. Key to this approach is the use of hydrocarbon activation enzymes able to overcome the high stability and low reactivity of hydrocarbon compounds through the cleavage of an inert C—H bond. Oxygen-dependent or oxygen-independent activation enzymes can be exploited for this purpose, which when combined with appropriate pathways for the conversion of activated hydrocarbons to key metabolic intermediates, enables the generation of product precursors that can subsequently be converted to desired compounds through established pathways. These novel engineered microorganism(s) provide a route for the production of fuels and chemicals from short chain hydrocarbons such as methane, ethane, propane, butane, and pentane.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: February 27, 2024
    Inventors: Ramon Gonzalez, James Clomburg, Alexander Chou
  • Publication number: 20230383319
    Abstract: The use of microorganisms to make alpha-functionalized chemicals and fuels, (e.g. alpha-functionalized carboxylic acids, alcohols, hydrocarbons, amines, and their beta-, and omega-functionalized derivatives), by utilizing an iterative carbon chain elongation pathway that uses functionalized extender units. The core enzymes in the pathway include thiolase, dehydrogenase, dehydratase and reductase. Native or engineered thiolases catalyze the condensation of either unsubstituted or functionalized acyl-CoA primers with an alpha-functionalized acetyl-CoA as the extender unit to generate alpha-functionalized ?-keto acyl-CoA. Dehydrogenase converts alpha-functionalized ?-keto acyl-CoA to alpha-functionalized ?-hydroxy acyl-CoA. Dehydratase converts alpha-functionalized ?-hydroxy acyl-CoA to alpha-functionalized enoyl-CoA. Reductase converts alpha-functionalized enoyl-CoA to alpha-functionalized acyl-CoA. The platform can be operated in an iterative manner (i.e.
    Type: Application
    Filed: June 1, 2023
    Publication date: November 30, 2023
    Inventor: Ramon GONZALEZ
  • Publication number: 20230332191
    Abstract: Many biotechnologically relevant organisms cannot utilize cheap and abundant one carbon feedstocks, e.g. CO2, CO, formaldehyde, methanol, and methane, for growth and instead prefer complex feedstocks such as sugars. Disclosed herein is a system that enables organisms to consume one carbon molecules for growth and maintenance via a formyl-CoA elongation pathway. Utilization of one carbon feedstocks can replace the use of sugar as the primary means of cultivating organisms in biotechnological applications. This has the potential to be more cost effective and avoid the controversial use of food as feedstocks. Intermediates of the formyl-CoA elongation pathway may be also be converted to desired chemical products.
    Type: Application
    Filed: August 26, 2021
    Publication date: October 19, 2023
    Inventors: Ramon GONZALEZ, Alexander CHOU, James CLOMBURG, Fayin ZHU, Seung Hwan LEE
  • Patent number: 11781120
    Abstract: This disclosure generally relates to the use of microorganisms to make various functionalized polyketides through polyketoacyl-CoA thiolase-catalyzed non-decarboxylative condensation reactions instead of decarboxylative reactions catalyzed by polyketide synthases. Native or engineered polyketoacyl-CoA thiolases catalyze the non-decarboxylative Claisen condensation in an iterative manner (i.e. multiple rounds) between two either unsubstituted or functionalized ketoacyl-CoAs (and polyketoacyl-CoAs) serving as the primers and acyl-CoAs serving as the extender unit to generate (and elongate) polyketoacyl-CoAs. Before the next round of polyketoacyl-CoA thiolase reaction, the ?-keto group of the polyketide chain of polyketoacyl-CoA can be reduced and modified step-wise by 3-OH-polyketoacyl-CoA dehydrogenase or polyketoenoyl-CoA hydratase or polyketoenoyl-CoA reductase. Dehydrogenase converts the ?-keto group to ?-hydroxy group. Hydratase converts the ?-hydroxy group to ?-?-double-bond.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: October 10, 2023
    Inventor: Ramon Gonzalez
  • Patent number: 11697830
    Abstract: The use of microorganisms to make alpha-functionalized chemicals and fuels, (e.g. alpha-functionalized carboxylic acids, alcohols, hydrocarbons, amines, and their beta-, and omega-functionalized derivatives), by utilizing an iterative carbon chain elongation pathway that uses functionalized extender units. The core enzymes in the pathway include thiolase, dehydrogenase, dehydratase and reductase. Native or engineered thiolases catalyze the condensation of either unsubstituted or functionalized acyl-CoA primers with an alpha-functionalized acetyl-CoA as the extender unit to generate alpha-functionalized ?-keto acyl-CoA. Dehydrogenase converts alpha-functionalized ?-keto acyl-CoA to alpha-functionalized ?-hydroxy acyl-CoA. Dehydratase converts alpha-functionalized ?-hydroxy acyl-CoA to alpha-functionalized enoyl-CoA. Reductase converts alpha-functionalized enoyl-CoA to alpha-functionalized acyl-CoA. The platform can be operated in an iterative manner (i.e.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: July 11, 2023
    Inventors: Ramon Gonzalez, James M. Clomburg, Seokjung Cheong
  • Publication number: 20220251613
    Abstract: Methods of using microorganisms to make chemicals and fuels, including carboxylic acids, alcohols, hydrocarbons, and their alpha-, beta-, and omega-functionalized derivatives are described. Native or engineered thiolases are used condense a growing acyl-ACP and acetyl-ACP in combination with type II fatty acid synthesis. The resulting fatty acid biosynthesis cycle has an ATP yield analogous to the functional reverse ?-oxidation cycle.
    Type: Application
    Filed: April 5, 2022
    Publication date: August 11, 2022
    Inventors: Ramon GONZALEZ, James M. CLOMBURG
  • Publication number: 20220162661
    Abstract: The production of substituted 2-hydroxyacyl-CoA molecules by a novel reaction is described. The reaction involves the condensation of formyl-CoA with a carbonyl-containing molecule. Such carbonyl-containing molecules include a substituted aldehyde and a ketone. The reaction is catalyzed by enzymes using a TPP-dependent mechanism. Also described is the production of unsubstituted and substituted 2-hydroxyacyl-CoA molecules comprising the condensation of formyl-CoA with a carbonyl-containing molecule, wherein the condensation is catalyzed by a prokaryotic HACL. The 2-hydroxyacyl-CoA can be converted to chemical products having broad applications by using enzyme catalysts. The combination of enzyme catalysts comprises novel biochemical reaction pathways that can be deployed either as polypeptides in a reaction buffer or genetically encoded in recombinant microorganisms.
    Type: Application
    Filed: November 30, 2021
    Publication date: May 26, 2022
    Inventor: Ramon Gonzalez
  • Patent number: 11319562
    Abstract: Methods of using microorganisms to make chemicals and fuels, including carboxylic acids, alcohols, hydrocarbons, and their alpha-, beta-, and omega-functionalized derivatives are described. Native or engineered thiolases are used condense a growing acyl-ACP and acetyl-ACP in combination with type II fatty acid synthesis. The resulting fatty acid biosynthesis cycle has an ATP yield analogous to the functional reverse ?-oxidation cycle.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: May 3, 2022
    Inventors: Ramon Gonzalez, James M. Clomburg
  • Publication number: 20220112477
    Abstract: An engineered microbe that contains a designed platform for the conversion of one-carbon substrates to chemical products is described. The designed platform embodies a new metabolic architecture that consolidates carbon fixation, central metabolism, and product synthesis into a single pathway. This is made possible by the key finding that 2-hydroxyacyl-CoA lyase, an enzyme in the ?-oxidation pathway, is capable of catalyzing the C—C bond formation between formyl-CoA and aldehydes of different chain lengths, allowing for the elongation of the carbon backbone of said aldehyde by one-carbon units. These novel microbes present an opportunity for the production of chemicals from single-carbon feedstocks such as carbon dioxide, carbon monoxide, formate, formaldehyde, methanol or methane.
    Type: Application
    Filed: October 26, 2021
    Publication date: April 14, 2022
    Inventors: Ramon Gonzalez, Alexander Chou, James Clomburg
  • Publication number: 20210371884
    Abstract: This disclosure generally relates to the use of enzyme combinations or recombinant microbes comprising same to make isoprenoid precursors, isoprenoids and derivatives thereof including prenylated aromatic compounds. Novel metabolic pathways exploiting Claisen, aldol, and acyloin condensations are used instead of the natural mevalonate (MVA) pathway or 1-deoxy-d-xylulose 5-phosphate (DXP) pathways for generating isoprenoid precursors such as isopentenyl pyrophosphate (IPP), dimethylallyl pyrophosphate (DMAPP), and geranyl pyrophosphate (GPP). These pathways have the potential for better carbon and or energy efficiency than native pathways. Both decarboxylative and non-carboxylative condensations are utilized, enabling product synthesis from a number of different starting compounds.
    Type: Application
    Filed: April 19, 2021
    Publication date: December 2, 2021
    Inventors: Ramon GONZALEZ, James M. CLOMGURG, Seokjung CHEONG
  • Patent number: 11186834
    Abstract: An engineered microbe that contains a designed platform for the conversion of one-carbon substrates to chemical products is described. The designed platform embodies a new metabolic architecture that consolidates carbon fixation, central metabolism, and product synthesis into a single pathway. This is made possible by the key finding that 2-hydroxyacyl-CoA lyase, an enzyme in the ?-oxidation pathway, is capable of catalyzing the C—C bond formation between formyl-CoA and aldehydes of different chain lengths, allowing for the elongation of the carbon backbone of said aldehyde by one-carbon units. These novel microbes present an opportunity for the production of chemicals from single-carbon feedstocks such as carbon dioxide, carbon monoxide, formate, formaldehyde, methanol or methane.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: November 30, 2021
    Inventors: Ramon Gonzalez, Alexander Chou, James Clomburg
  • Publication number: 20210330932
    Abstract: A catheter including a tubular catheter body defining a distal portion, a distal end and a lumen that extends to the distal end, a radiopaque marker carried within the lumen, and a non-metal tip that is bonded to distal end of the catheter body.
    Type: Application
    Filed: July 3, 2021
    Publication date: October 28, 2021
    Inventors: Juan Ramon Gonzalez, Sam William Bowman, Rudolph A. Montalvo
  • Patent number: 11123516
    Abstract: A catheter including a tubular catheter body defining a distal portion, a distal end and a lumen that extends to the distal end, a radiopaque marker carried within the lumen, and a non-metal tip that is bonded to distal end of the catheter body.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: September 21, 2021
    Assignee: Medtronic Minimed, Inc.
    Inventors: Juan Ramon Gonzalez, Sam William Bowman, Rudolph A. Montalvo
  • Patent number: 11046978
    Abstract: This disclosure generally relates to the use of enzyme combinations or recombinant microbes comprising same to make isoprenoid precursors, isoprenoids and derivatives thereof including prenylated aromatic compounds. Novel metabolic pathways exploiting Claisen, aldol, and acyioin condensations are used instead of the natural mevalonate (MVA) pathway or 1-deoxy-d-xylulose 5-phosphate (DXP) pathways for generating isoprenoid precursors such as isopentenyl pyrophosphate (IPP), dimethylallyl pyrophosphate (DMAPP), and geranyl pyrophosphate (GPP). These pathways have the potential for better carbon and or energy efficiency than native pathways. Both decarboxylative and non-carboxylative condensations are utilized, enabling product synthesis from a number of different starting compounds.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: June 29, 2021
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Ramon Gonzalez, James M. Clomburg, Seokjung Cheong
  • Publication number: 20210054427
    Abstract: This disclosure generally relates to the use of microorganisms to make various functionalized polyketides through polyketoacyl-CoA thiolase-catalyzed non-decarboxylative condensation reactions instead of decarboxylative reactions catalyzed by polyketide synthases. Native or engineered polyketoacyl-CoA thiolases catalyze the non-decarboxylative Claisen condensation in an iterative manner (i.e. multiple rounds) between two either unsubstituted or functionalized ketoacyl-CoAs (and polyketoacyl-CoAs) serving as the primers and acyl-CoAs serving as the extender unit to generate (and elongate) polyketoacyl-CoAs. Before the next round of polyketoacyl-CoA thiolase reaction, the ?-keto group of the polyketide chain of polyketoacyl-CoA can be reduced and modified step-wise by 3-OH-polyketoacyl-CoA dehydrogenase or polyketoenoyl-CoA hydratase or polyketoenoyl-CoA reductase. Dehydrogenase converts the ?-keto group to ?-hydroxy group. Hydratase converts the ?-hydroxy group to ?-?-double-bond.
    Type: Application
    Filed: July 15, 2020
    Publication date: February 25, 2021
    Inventor: Ramon Gonzalez
  • Publication number: 20210002677
    Abstract: The use of microorganisms to make omega- and/or omega-1-functionalized products through an iterative carbon chain elongation pathway that we call a reverse beta oxidation pathway. The pathway uses omega-functionalized CoA thioesters as primers and acetyl-CoA as the extender unit in a non-decarboxylative Claisen condensation, and then uses beta oxidation or fatty acid synthesis enzymes to complete the cycle, via reductase, dehydratase and reductase reactions. Various termination enzymes that act on the functionalized beta-keto acyl-CoA intermediates of the pathway and produce omega or omega-1 functionalized products. The action of termination enzymes on such intermediates yield a large variety of products.
    Type: Application
    Filed: September 15, 2020
    Publication date: January 7, 2021
    Inventor: Ramon GONZALEZ
  • Patent number: 10858261
    Abstract: The present invention relates to a method for obtaining calcium aluminates for metallurgical use from non-saline aluminum slags by means of reactive grinding and thermal treatment.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: December 8, 2020
    Assignees: ARZYZ, S.A. DE C.V., CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS (CSIC)
    Inventors: Felix Antonio Lopez Gomez, Francisco Jose Alguacil Priego, Jose Ramon Gonzalez Gracia, Mario Sergio Ramirez Zablah
  • Patent number: 10851382
    Abstract: The present invention relates with the technical field of biotechnology, and particularly provides a promoter inducible under abiotic stress conditions, which is used to regulate expression of a nucleotide sequence encoding a product of interest under these conditions. The invention also refers to a genetic construction containing said promoter, the plant cells transformed with said construction as well as the transgenic plants that can be regenerated from said cells, and which are capable of growing and developing properly, keeping high levels of productive yield under abiotic stress conditions.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: December 1, 2020
    Assignees: UNIVERSIDAD DE TALCA, INVERSIONES Y ASESORÏA OLIVARES Y MELOSSI LTDA., INVESTIGACIONES AGRÍCOLAS Y FORESTALES DEL MAULE S.A., FERMELO S.A
    Inventors: Simön Aurelio Ruiz Lara, Enrique Ramón Gonzalez Villanueva, Jorge Luis Pérez Díaz, José Ricardo Pérez Díaz, Mónica Loreto Yañez Chävez, Isabel Alejandra Verdugo Bastías, Sebastián Alejandro González Díaz, Ricardo Javier Chilian
  • Publication number: 20200347423
    Abstract: An engineered microorganism(s) with novel pathways for the conversion of short-chain hydrocarbons to fuels and chemicals (e.g. carboxylic acids, alcohols, hydrocarbons, and their alpha-, beta-, and omega-functionalized derivatives) is described. Key to this approach is the use of hydrocarbon activation enzymes able to overcome the high stability and low reactivity of hydrocarbon compounds through the cleavage of an inert C—H bond. Oxygen-dependent or oxygen-independent activation enzymes can be exploited for this purpose, which when combined with appropriate pathways for the conversion of activated hydrocarbons to key metabolic intermediates, enables the generation of product precursors that can subsequently be converted to desired compounds through established pathways. These novel engineered microorganism(s) provide a route for the production of fuels and chemicals from short chain hydrocarbons such as methane, ethane, propane, butane, and pentane.
    Type: Application
    Filed: May 19, 2020
    Publication date: November 5, 2020
    Inventors: Ramon Gonzalez, James Clomburg, Alexander Chou
  • Publication number: 20200325502
    Abstract: The use of microorganisms to make alpha-functionalized chemicals and fuels, (e.g. alpha-functionalized carboxylic acids, alcohols, hydrocarbons, amines, and their beta-, and omega-functionalized derivatives), by utilizing an iterative carbon chain elongation pathway that uses functionalized extender units. The core enzymes in the pathway include thiolase, dehydrogenase, dehydratase and reductase. Native or engineered thiolases catalyze the condensation of either unsubstituted or functionalized acyl-CoA primers with an alpha-functionalized acetyl-CoA as the extender unit to generate alpha-functionalized ?-keto acyl-CoA. Dehydrogenase converts alpha-functionalized ?-keto acyl-CoA to alpha-functionalized ?-hydroxy acyl-CoA. Dehydratase converts alpha-functionalized ?-hydroxy acyl-CoA to alpha-functionalized enoyl-CoA. Reductase converts alpha-functionalized enoyl-CoA to alpha-functionalized acyl-CoA. The platform can be operated in an iterative manner (i.e.
    Type: Application
    Filed: March 13, 2020
    Publication date: October 15, 2020
    Inventors: Ramon GONZALEZ, James M. CLOMBURG, Seokjung CHEONG