Patents by Inventor RAMON SANCHEZ PEREZ

RAMON SANCHEZ PEREZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9778902
    Abstract: Software Digital Front End (SoftDFE) signal processing techniques are provided. One or more digital front end (DFE) functions are performed on a signal in software by executing one or more specialized instructions on a processor to perform the one or more digital front end (DFE) functions on the signal, wherein the processor has an instruction set comprised of one or more of linear and non-linear instructions. A block of samples comprised of a plurality of data samples is optionally formed and the digital front end (DFE) functions are performed on the block of samples. The specialized instructions can include a vector convolution function, a complex exponential function, an xk function, a vector compare instruction, a vector max( ) instruction, a vector multiplication instruction, a vector addition instruction, a vector sqrt( ) instruction, a vector 1/x instruction, and a user-defined non-linear instruction.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: October 3, 2017
    Assignee: Intel Corporation
    Inventors: Kameran Azadet, Chengzhou Li, Albert Molina, Joseph H. Othmer, Steven C. Pinault, Meng-Lin Yu, Joseph Williams, Ramon Sanchez Perez, Jian-Guo Chen
  • Patent number: 9100228
    Abstract: A method and system for canonical channel estimation in the Long Term Evolution uplink where a multi-frequency signal is generated and then converted to frequency spectrum which is then convolved in the frequency domain with a truncated window function to obtain a time domain channel impulse response. The time domain channel impulse response can be then transformed to a frequency domain to produce a down sampled user channel response, which can be then linearly interpolated to provide a channel estimate for a plurality of subcarriers. Such an approach achieves channel estimation within Long Term Evolution at only canonical locations to reduce complexity without loss in channel entropy.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: August 4, 2015
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Samer Hijazi, Kameran Azadet, Meng-Lin Yu, Joseph Othmer, Ramon Sanchez Perez
  • Patent number: 8982992
    Abstract: Block-based crest factor reduction (CFR) techniques are provided. An exemplary block-based crest factor reduction method comprises obtaining a block of data samples comprised of a plurality of samples; applying the block of data to a crest factor reduction block; and providing a processed block of data from the crest factor reduction block. The block-based crest factor reduction method can optionally be iteratively performed a plurality of times for the block of data. The block of data samples can comprise an expanded block having at least one cursor block. For example, at least two pre-cursor blocks and one post-cursor block can be employed. The peaks can be cancelled, for example, only in the block of data samples and in a first of the pre-cursor blocks.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: March 17, 2015
    Assignee: LSI Corporation
    Inventors: Kameran Azadet, Albert Molina, Joseph H. Othmer, Meng-Lin Yu, Ramon Sanchez Perez
  • Publication number: 20140086356
    Abstract: Software Digital Front End (SoftDFE) signal processing techniques are provided. One or more digital front end (DFE) functions are performed on a signal in software by executing one or more specialized instructions on a processor to perform the one or more digital front end (DFE) functions on the signal, wherein the processor has an instruction set comprised of one or more of linear and non-linear instructions. A block of samples comprised of a plurality of data samples is optionally formed and the digital front end (DFE) functions are performed on the block of samples. The specialized instructions can include a vector convolution function, a complex exponential function, an xk function, a vector compare instruction, a vector max( ) instruction, a vector multiplication instruction, a vector addition instruction, a vector sqrt( ) instruction, a vector 1/x instruction, and a user-defined non-linear instruction.
    Type: Application
    Filed: October 26, 2012
    Publication date: March 27, 2014
    Applicant: LSI Corporation
    Inventors: Kameran Azadet, Chengzhou Li, Albert Molina, Joseph H. Othmer, Steven C. Pinault, Meng-Lin Yu, Joseph Willimas, Ramon Sanchez Perez, Jian-Guo Chen
  • Publication number: 20140072073
    Abstract: Block-based crest factor reduction (CFR) techniques are provided. An exemplary block-based crest factor reduction method comprises obtaining a block of data samples comprised of a plurality of samples; applying the block of data to a crest factor reduction block; and providing a processed block of data from the crest factor reduction block. The block-based crest factor reduction method can optionally be iteratively performed a plurality of times for the block of data. The block of data samples can comprise an expanded block having at least one cursor block. For example, at least two pre-cursor blocks and one post-cursor block can be employed. The peaks can be cancelled, for example, only in the block of data samples and in a first of the pre-cursor blocks.
    Type: Application
    Filed: October 26, 2012
    Publication date: March 13, 2014
    Applicant: LSI Corporation
    Inventors: Kameran Azadet, Albert Molina, Joseph H. Othmer, Meng-Lin Yu, Ramon Sanchez Perez
  • Publication number: 20110310944
    Abstract: A method and system for canonical channel estimation in the Long Term Evolution uplink where a multi-frequency signal is generated and then converted to frequency spectrum which is then convolved in the frequency domain with a truncated window function to obtain a time domain channel impulse response. The time domain channel impulse response can be then transformed to a frequency domain to produce a down sampled user channel response, which can be then linearly interpolated to provide a channel estimate for a plurality of subcarriers. Such an approach achieves channel estimation within Long Term Evolution at only canonical locations to reduce complexity without loss in channel entropy.
    Type: Application
    Filed: October 19, 2010
    Publication date: December 22, 2011
    Inventors: SAMER HIJAZI, KAMERAN AZADET, MENG-LIN YU, JOSEPH OTHMER, RAMON SANCHEZ PEREZ