Patents by Inventor Ramy Michael Souri

Ramy Michael Souri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11073133
    Abstract: A method for controlling the operation of a wind turbine may generally include monitoring a current yaw position of a nacelle of the wind turbine, wherein the current yaw position is located within one of a plurality of yaw sectors defined for the nacelle. In addition, the method may include monitoring a wind-dependent parameter of the wind turbine and determining a variance of the wind-dependent parameter over time, wherein the variance is indicative of variations in a wind parameter associated with the wind turbine. Moreover, the method may include determining at least one curtailed operating setpoint for the wind turbine when the variance exceeds a predetermined variance threshold, wherein the curtailed operating setpoint(s) is determined based at least in part on historical wind data for the yaw sector associated with the current yaw position.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: July 27, 2021
    Assignee: General Electric Company
    Inventors: Danian Zheng, Shuang Gu, Veronica Hernandez-Ortiz, Xiongzhe Huang, David Forrest Loy, Ramy Michael Souri
  • Patent number: 10871144
    Abstract: The present disclosure is directed to a method for reducing loads of a wind turbine. The method includes monitoring, via a turbine controller, a rotor blade of the wind turbine for faults. If a fault is detected, the method includes determining an operational status of the wind turbine. If a predetermined operational status is present at the same time the fault is present, the method also include actively yawing a nacelle of the wind turbine away from an incoming wind direction until either the fault is corrected or cleared and/or the operational status changes.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: December 22, 2020
    Assignee: General Electric Company
    Inventors: Santiago Tomas, Jeffrey Alan Melius, Ramy Michael Souri, Jignesh Govindlal Gandhi, Edward Way Hardwicke, Jr., Darren John Danielsen
  • Patent number: 10830208
    Abstract: A method for identifying a blade run-away condition in the event of a pitch system failure of a rotor blade of a wind turbine includes determining, via one or more sensors, an actual rotor loading of the wind turbine. The method also includes determining, via a turbine controller, an estimated rotor loading of the wind turbine based on at least one of one or more operating conditions of the wind turbine or one or more wind conditions of the wind turbine. Further, the method includes determining a difference between the actual rotor loading and the estimated rotor loading. The method also includes determining whether the blade run-away condition is present based on the difference. The method may also include implementing a corrective action that mitigates loads caused by the blade run-away condition.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: November 10, 2020
    Assignee: General Electric Company
    Inventors: Santiago Tomas, Raveendra Penmatsa, Soeren Georg, Ramy Michael Souri, Ryan Michael Sunyak, Darren John Danielsen, Robert Peter Slack
  • Patent number: 10823141
    Abstract: A method for reducing loads of a wind turbine includes determining an angular pitch speed parameter of the rotor blade of the wind turbine. The method also includes determining an operational state of the wind turbine. Further, the method includes comparing the angular pitch speed parameter to a predetermined parameter threshold during turbine shutdown and/or a commanded pitch event. If the operational state corresponds to a predetermined operational state, the method includes yawing a nacelle of the wind turbine away from an incoming wind direction when the angular pitch speed parameter is below the predetermined parameter threshold during the turbine shutdown and/or the commanded pitch event.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: November 3, 2020
    Assignee: General Electric Company
    Inventors: Darren John Danielsen, Philip James Verzella, Jignesh Govindlal Gandhi, Ramy Michael Souri, James Paul Davidson, Christopher Lee Tschappatt
  • Publication number: 20200025171
    Abstract: A method for reducing loads of a wind turbine includes determining an angular pitch speed parameter of the rotor blade of the wind turbine. The method also includes determining an operational state of the wind turbine. Further, the method includes comparing the angular pitch speed parameter to a predetermined parameter threshold during turbine shutdown and/or a commanded pitch event. If the operational state corresponds to a predetermined operational state, the method includes yawing a nacelle of the wind turbine away from an incoming wind direction when the angular pitch speed parameter is below the predetermined parameter threshold during the turbine shutdown and/or the commanded pitch event.
    Type: Application
    Filed: July 17, 2018
    Publication date: January 23, 2020
    Inventors: Darren John Danielsen, Philip James Verzella, Jignesh Govindlal Gandhi, Ramy Michael Souri, James Paul Davidson, Christopher Lee Tschappatt
  • Publication number: 20190113021
    Abstract: A method for identifying a blade run-away condition in the event of a pitch system failure of a rotor blade of a wind turbine includes determining, via one or more sensors, an actual rotor loading of the wind turbine. The method also includes determining, via a turbine controller, an estimated rotor loading of the wind turbine based on at least one of one or more operating conditions of the wind turbine or one or more wind conditions of the wind turbine. Further, the method includes determining a difference between the actual rotor loading and the estimated rotor loading. The method also includes determining whether the blade run-away condition is present based on the difference. The method may also include implementing a corrective action that mitigates loads caused by the blade run-away condition.
    Type: Application
    Filed: September 17, 2018
    Publication date: April 18, 2019
    Inventors: Santiago Tomas, Raveendra Penmatsa, Soeren Georg, Ramy Michael Souri, Ryan Michael Sunyak, Darren John Danielsen, Robert Peter Slack
  • Patent number: 10180128
    Abstract: The present subject matter is directed to a method for managing and/or categorizing trip faults of an electrical component, such as power converter, of a wind turbine. The method includes receiving, via a local controller of the wind turbine, an indication of at least one trip fault in the electrical component of the wind turbine. The method also includes determining, via the local controller, a unique identifier for the trip fault. More specifically, the unique identifier contains information regarding a type of the trip fault and at least one of an origin or a cause, of the trip fault. Further, the method includes sending, via the local controller, the unique identifier to a supervisory controller of the wind turbine. Thus, the method also includes implementing, via the supervisory controller, a control action based on the unique identifier.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: January 15, 2019
    Assignee: General Electric Company
    Inventors: Sidney Allen Barker, James Thomas Bailey, Bruce Allen Gerritsen, Minesh Ashok Shah, Ramy Michael Souri, Raju Singamsetti, Achchugatla Vikramaditya
  • Publication number: 20180347542
    Abstract: The present disclosure is directed to a method for reducing loads of a wind turbine. The method includes monitoring, via a turbine controller, a rotor blade of the wind turbine for faults. If a fault is detected, the method includes determining an operational status of the wind turbine. If a predetermined operational status is present at the same time the fault is present, the method also include actively yawing a nacelle of the wind turbine away from an incoming wind direction until either the fault is corrected or cleared and/or the operational status changes.
    Type: Application
    Filed: May 21, 2018
    Publication date: December 6, 2018
    Inventors: Santiago TOMAS, Jeffrey Alan MELIUS, Ramy Michael SOURI, Jignesh Govindlal GANDHI, Edward Way HARDWICKE, JR., Darren John DANIELSEN
  • Publication number: 20170321654
    Abstract: A method for controlling the operation of a wind turbine may generally include monitoring a current yaw position of a nacelle of the wind turbine, wherein the current yaw position is located within one of a plurality of yaw sectors defined for the nacelle. In addition, the method may include monitoring a wind-dependent parameter of the wind turbine and determining a variance of the wind-dependent parameter over time, wherein the variance is indicative of variations in a wind parameter associated with the wind turbine. Moreover, the method may include determining at least one curtailed operating setpoint for the wind turbine when the variance exceeds a predetermined variance threshold, wherein the curtailed operating setpoint(s) is determined based at least in part on historical wind data for the yaw sector associated with the current yaw position.
    Type: Application
    Filed: October 31, 2014
    Publication date: November 9, 2017
    Inventors: Danian ZHENG, Shuang GU, Veronica HERNANDEZ-ORTIZ, Xiongzhe HUANG, David Forrest LOY, Ramy Michael SOURI
  • Publication number: 20170122291
    Abstract: The present subject matter is directed to a method for managing and/or categorizing trip faults of an electrical component, such as power converter, of a wind turbine. The method includes receiving, via a local controller of the wind turbine, an indication of at least one trip fault in the electrical component of the wind turbine. The method also includes determining, via the local controller, a unique identifier for the trip fault. More specifically, the unique identifier contains information regarding a type of the trip fault and at least one of an origin or a cause, of the trip fault. Further, the method includes sending, via the local controller, the unique identifier to a supervisory controller of the wind turbine. Thus, the method also includes implementing, via the supervisory controller, a control action based on the unique identifier.
    Type: Application
    Filed: October 14, 2016
    Publication date: May 4, 2017
    Inventors: Sidney Allen Barker, James Thomas Bailey, Bruce Allen Gerritsen, Minesh Ashok Shah, Ramy Michael Souri, Raju Singamsetti, Achchugatla Vikramaditya
  • Patent number: 9231509
    Abstract: In one aspect, a system for operating a power generation system within a battery storage/discharge mode or a dynamic brake mode may generally include a power convertor having a DC link, a switching module coupled to the DC link and a selector switch configured to selectively couple the switching module to one of a storage device or a resistive element of the power generation system. The selector switch may be movable between a first position, wherein the switching module is coupled to the storage device such that power is capable of being directed between the DC link and the storage device via control of the switching module, and a second position, wherein the switching module is coupled to the resistive element such that power is capable of being directed between the DC link and the resistive element via control of the switching module.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: January 5, 2016
    Assignee: General Electric Company
    Inventors: Robert Gregory Wagoner, David Smith, Ramy Michael Souri
  • Publication number: 20150145251
    Abstract: In one aspect, a system for operating a power generation system within a battery storage/discharge mode or a dynamic brake mode may generally include a power convertor having a DC link, a switching module coupled to the DC link and a selector switch configured to selectively couple the switching module to one of a storage device or a resistive element of the power generation system. The selector switch may be movable between a first position, wherein the switching module is coupled to the storage device such that power is capable of being directed between the DC link and the storage device via control of the switching module, and a second position, wherein the switching module is coupled to the resistive element such that power is capable of being directed between the DC link and the resistive element via control of the switching module.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: General Electric Company
    Inventors: Robert Gregory Wagoner, David Smith, Ramy Michael Souri
  • Patent number: 7216488
    Abstract: An ignition device assembly for a gas turbine engine combustor includes a body and a shroud. The body extends from an inlet end to an outlet end, and the shroud extends circumferentially around at least a portion of the body, and axially from a first end to a tip end. The shroud includes a tip portion and a body portion. The body portion includes a plurality of metering openings and a plurality of first outlet openings. The plurality of metering openings are for channeling cooling air to the ignition device body, and the plurality of first outlet openings are for channeling spent cooling air from the ignition device body. The tip portion includes a plurality of discharge openings extending therethrough for channeling cooling from the ignition device body. The plurality of first outlet openings are between the shroud tip portion and the plurality of shroud metering openings.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: May 15, 2007
    Assignee: General Electric Company
    Inventors: Stephen John Howell, John Carl Jacobson, Barry Francis Barnes, Ramy Michael Souri