Patents by Inventor Ramyanshu Datta

Ramyanshu Datta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210096944
    Abstract: Systems and methods are described for modifying input and output (I/O) to an object storage service by implementing one or more owner-specified functions to I/O requests. A function can implement a data manipulation, such as filtering out sensitive data before reading or writing the data. The functions can be applied prior to implementing a request method (e.g., GET or PUT) specified within the I/O request, such that the data to which the method is applied my not match the object specified within the request. For example, a user may request to obtain (e.g., GET) a data set. The data set may be passed to a function that filters sensitive data to the data set, and the GET request method may then be applied to the output of the function. In this manner, owners of objects on an object storage service are provided with greater control of objects stored or retrieved from the service.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Inventors: Ramyanshu Datta, Timothy Lawrence Harris, Kevin C. Miller, Haripriya Devnath, Robert Devers Wilson
  • Publication number: 20210097202
    Abstract: Systems and methods are described for modifying input and output (I/O) to an object storage service by implementing one or more owner-specified functions to I/O requests. A function can implement a data manipulation, such as filtering out sensitive data before reading or writing the data. The functions can be applied prior to implementing a request method (e.g., GET or PUT) specified within the I/O request, such that the data to which the method is applied my not match the object specified within the request. For example, a user may request to obtain (e.g., GET) a data set. The data set may be passed to a function that filters sensitive data to the data set, and the GET request method may then be applied to the output of the function. In this manner, owners of objects on an object storage service are provided with greater control of objects stored or retrieved from the service.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Inventors: Ramyanshu Datta, Timothy Lawrence Harris, Kevin C. Miller
  • Publication number: 20210097189
    Abstract: Systems and methods are described for modifying input and output (I/O) to an object storage service by implementing one or more owner-specified functions to I/O requests. Different data manipulation functions can be placed in different I/O paths depending on the request method or user access level. For example, a user having full access may be returned the unaltered version of the object, whereas a user having modified or reduced access may be returned a modified or redacted version of the object. In this manner, owners of the object collection are provided with greater control over how the object collection is accessed.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Inventors: Kevin C. Miller, Timothy Lawrence Harris, Ramyanshu Datta
  • Publication number: 20210097083
    Abstract: Systems and methods are described for modifying input and output (I/O) to an object storage service by implementing one or more owner-specified functions to I/O requests. A function can implement a data manipulation, such as filtering out sensitive data before reading or writing the data. The functions can be applied prior to implementing a request method (e.g., GET or PUT) specified within the I/O request, such that the data to which the method is applied my not match the object specified within the request. For example, a user may request to obtain (e.g., GET) a data set. The data set may be passed to a function that filters sensitive data to the data set, and the GET request method may then be applied to the output of the function. In this manner, owners of objects on an object storage service are provided with greater control of objects stored or retrieved from the service.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Inventors: Timothy Lawrence Harris, Kevin C. Miller, Ramyanshu Datta
  • Publication number: 20210097024
    Abstract: Systems and methods are described for modifying input and output (I/O) to an object storage service by implementing one or more owner-specified functions to I/O requests. A function can implement data access control, such as controlling which users are provided access to which portions of an object collection maintained by the object storage service. For example, data access control functions can be applied prior to implementing a request method (e.g., GET or PUT) specified within the I/O request, and may grant or deny access based on a variety of factors such as user identity, time window, prior access, keywords, geographical region, etc. In this manner, owners of the object collection are provided with greater control over how the object collection is accessed.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Inventors: Kevin C. Miller, Timothy Lawrence Harris, Ramyanshu Datta
  • Patent number: 10908927
    Abstract: Systems and methods are described for modifying input and output (I/O) to an object storage service by implementing one or more owner-specified functions to I/O requests. A function can implement a data manipulation, such as filtering out sensitive data before reading or writing the data. The functions can be applied prior to implementing a request method (e.g., GET or PUT) specified within the I/O request, such that the data to which the method is applied my not match the object specified within the request. For example, a user may request to obtain (e.g., GET) a data set. The data set may be passed to a function that filters sensitive data to the data set, and the GET request method may then be applied to the output of the function. In this manner, owners of objects on an object storage service are provided with greater control of objects stored or retrieved from the service.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: February 2, 2021
    Assignee: Amazon Technologies, Inc.
    Inventors: Timothy Lawrence Harris, Kevin C. Miller, Ramyanshu Datta, Chandan Talukdar
  • Patent number: 8471577
    Abstract: A method of topside only dual-side testing of an electronic assembly includes providing a singulated through substrate via (TSV) die flip chip attached to a die support including a package substrate. The TSVs on the TSV die extend from its frontside to contactable TSV tips on its bottomside. The TSVs on the frontside of the TSV die are coupled to embedded topside substrate pads on a top surface of the ML substrate. The die support includes lateral coupling paths between at least a portion of the embedded topside substrate pads and lateral topside pads on a topside surface of the die support lateral to the die area. The contactable TSV tips are contacted with probes to provide a first topside connection to the TSVs, and the lateral topside pads are contacted with probes to provide a second topside connection. Dual-side testing across the electronic assembly is performed using the first and second topside connections.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: June 25, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Daniel Joseph Stillman, James L. Oborny, William John Antheunisse, Norman J. Armendariz, Ramyanshu Datta, Margaret Simmons-Matthews, Jeff West
  • Patent number: 8344749
    Abstract: A method of testing electronic assemblies including singulated TSV die attached to a ML package substrate, on a substrate carrier. The substrate carrier includes through-holes for allowing probe contact to the BGA substrate pads on a bottomside of the package substrate that are coupled to the frontside of the TSVs. Contactable TSV tips on the bottomside of the TSV die are contacted with a topside coupler that includes a pattern of coupling terminals that matches a layout of at least a portion of the TSV tips or pads coupled to the TSV tips. The topside coupler electrically connects pairs of coupling terminals to provide a plurality of TSV loop back paths. The BGA substrate pads are contacted with a plurality of probes tips that extend through the through-holes to couple to the frontside of the TSVs. Electrical testing is performed across the electronic assembly to obtain at least one test parameter.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: January 1, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Daniel Joseph Stillman, James L. Oborny, William John Antheunisse, Norman J. Armendariz, Ramyanshu Datta, Kenneth M. Butler, Margaret Simmons-Matthews
  • Publication number: 20110304349
    Abstract: A method of topside only dual-side testing of an electronic assembly includes providing a singulated through substrate via (TSV) die flip chip attached to a die support including a package substrate. The TSVs on the TSV die extend from its frontside to contactable TSV tips on its bottomside. The TSVs on the frontside of the TSV die are coupled to embedded topside substrate pads on a top surface of the ML substrate. The die support includes lateral coupling paths between at least a portion of the embedded topside substrate pads and lateral topside pads on a topside surface of the die support lateral to the die area. The contactable TSV tips are contacted with probes to provide a first topside connection to the TSVs, and the lateral topside pads are contacted with probes to provide a second topside connection. Dual-side testing across the electronic assembly is performed using the first and second topside connections.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 15, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Daniel Joseph Stillman, James L. Oborny, William John Antheunisse, Norman J. Armendariz, Ramyanshu Datta, Margaret Simmons-Matthews, Jeff West
  • Publication number: 20110298488
    Abstract: A method of testing electronic assemblies including singulated TSV die attached to a ML package substrate, on a substrate carrier. The substrate carrier includes through-holes for allowing probe contact to the BGA substrate pads on a bottomside of the package substrate that are coupled to the frontside of the TSVs. Contactable TSV tips on the bottomside of the TSV die are contacted with a topside coupler that includes a pattern of coupling terminals that matches a layout of at least a portion of the TSV tips or pads coupled to the TSV tips. The topside coupler electrically connects pairs of coupling terminals to provide a plurality of TSV loop back paths. The BGA substrate pads are contacted with a plurality of probes tips that extend through the through-holes to couple to the frontside of the TSVs. Electrical testing is performed across the electronic assembly to obtain at least one test parameter.
    Type: Application
    Filed: June 7, 2010
    Publication date: December 8, 2011
    Applicant: Texas Instruments Incorporated
    Inventors: Daniel Joseph Stillman, James L. Oborny, William John Antheunisse, Norman J. Armendariz, Ramyanshu Datta, Kenneth M. Butler, Margaret Simmons-Matthews
  • Patent number: 7900086
    Abstract: A mechanism for accelerating test, debug and failure analysis of a multiprocessor device is provided. With the mechanism, on-chip trace logic is utilized to receive internal signals from logic provided in modules of the multiprocessor device. The modules are preferably copies of one another such that, given the same inputs, each module should operate in the same manner and generate the same output as long as the modules are operating properly. The modules are provided with the same inputs and the internal signals of the modules are traced using an on-chip trace bus and on-chip trace logic analyzer to perform the trace. The internal signals from one module are compared against another module so as to determine if there is any discrepancy which would indicate a fault. Additional pairs of modules may be compared to pinpoint a faulty module that is the source of the fault.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: March 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ramyanshu Datta, Matthew E. Fernsler, Harm P. Hofstee
  • Patent number: 7868794
    Abstract: Methods and apparatus to test and compensate multi-channel digital-to-analog converters (DACs) are described. In some examples, a multi-channel digital-to-analog converter (DAC) and an error detector are implemented in an integrated circuit. The multi-channel DAC includes a first DAC channel configured to generate a first analog representation of a digital input signal, and a second DAC channel configured to generate a second analog representation of the digital input signal. The error detector is configured to compare the first analog representation and the second analog representation to generate a difference signal, and to output a signal indicative of whether the difference signal is greater than a predetermined threshold.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: January 11, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Ramyanshu Datta, Christopher Michael Barr, Alessandro Paglieri
  • Publication number: 20100164762
    Abstract: Methods and apparatus to test and compensate multi-channel digital-to-analog converters (DACs) are described. In some examples, a multi-channel digital-to-analog converter (DAC) and an error detector are implemented in an integrated circuit. The multi-channel DAC includes a first DAC channel configured to generate a first analog representation of a digital input signal, and a second DAC channel configured to generate a second analog representation of the digital input signal. The error detector is configured to compare the first analog representation and the second analog representation to generate a difference signal, and to output a signal indicative of whether the difference signal is greater than a predetermined threshold.
    Type: Application
    Filed: December 29, 2008
    Publication date: July 1, 2010
    Inventors: Ramyanshu Datta, Christopher Michael Barr, Alessandro Paglieri
  • Publication number: 20080229166
    Abstract: A mechanism for accelerating test, debug and failure analysis of a multiprocessor device is provided. With the mechanism, on-chip trace logic is utilized to receive internal signals from logic provided in modules of the multiprocessor device. The modules are preferably copies of one another such that, given the same inputs, each module should operate in the same manner and generate the same output as long as the modules are operating properly. The modules are provided with the same inputs and the internal signals of the modules are traced using an on-chip trace bus and on-chip trace logic analyzer to perform the trace. The internal signals from one module are compared against another module so as to determine if there is any discrepancy which would indicate a fault. Additional pairs of modules may be compared to pinpoint a faulty module that is the source of the fault.
    Type: Application
    Filed: May 29, 2008
    Publication date: September 18, 2008
    Applicant: Internaional Business Machines Corporation
    Inventors: Ramyanshu Datta, Matthew E. Fernsler, Harm P. Hofstee
  • Patent number: 7337202
    Abstract: A low-power shift-and-negate unit within a fused multiply-adder circuit is disclosed. The shift-and-negate unit includes a large shift stage, a coarse shift stage, a negate stage and a fine shift stage. The large shift stage receives a first set of shift signals and a group of data signals to generate a group of first intermediate signals. The coarse shift stage receives a second set of shift signals and the group of first intermediate signals to generate a group of second intermediate signals and their complement signals. The large shift stage and the coarse shift stage are executed within a first single processor cycle. The negate stage receives a complement decision signal and the group of second intermediate signals along with their complement signals to generate a group of third intermediate signals. Finally, the fine shift stage receives a third set of shift signals and the group of third intermediate signals to generate a group of output signals.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: February 26, 2008
    Assignee: International Business Machines Corporation
    Inventors: Ramyanshu Datta, Robert Kevin Montoye
  • Publication number: 20070300115
    Abstract: An apparatus and method for accelerating test, debug and failure analysis of a multiprocessor device are provided. With the apparatus and method, on-chip trace logic is utilized to receive internal signals from logic provided in modules of the multiprocessor device. The modules are preferably copies of one another such that, given the same inputs, each module should operate in the same manner and generate the same output as long as the modules are operating properly. The modules are provided with the same inputs and the internal signals of the modules are traced using an on-chip trace bus and on-chip trace logic analyzer to perform the trace. The internal signals from one module are compared against another module so as to determine if there is any discrepancy which would indicate a fault. Additional pairs of modules may be compared to pinpoint a faulty module that is the source of the fault.
    Type: Application
    Filed: June 1, 2006
    Publication date: December 27, 2007
    Inventors: Ramyanshu Datta, Matthew E. Fernsler, Harm P. Hofstee
  • Patent number: 7284029
    Abstract: A 4-to-2 carry save adder using limited switching dynamic logic (LSDL) to reduce power consumption while reducing the delay of outputting the sum and carry bits. The 4-to-2 carry save adder may include a first LSDL circuit configured to output a sum bit. The carry save adder may further include a second LSDL circuit configured to output a carry bit. Both the first and second LSDL circuits use a carry generated in the current stage that was previously generated in the previous stage (next lower order bit position). Since the carry is generated in the current stage and not in the previous stage, the delay in outputting the sum and carry bits is reduced and hence the performance of carry save adders is improved. Further, since LSDL circuits were used in the carry save adder, power consumption was reduced while using a small amount of area.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: October 16, 2007
    Assignee: International Business Machines Corporation
    Inventors: Wendy A. Belluomini, Ramyanshu Datta, Chandler T. McDowell, Robert K. Montoye, Hung C. Ngo
  • Patent number: 7260755
    Abstract: An integrated circuit includes a testable delay path. A transition of a delay path input signal causes a subsequent transition of a delay path output signal. A pulse generator receives the delay path input and output signals and produces a pulse signal having a pulse width indicative of the delay between the delay path input and output signal transitions. A delay line receives the pulse signal from the pulse generator. The delay line generates information indicative of the pulse signal pulse width. The delay line may include multiple stages in series where each stage reduces the pulse width of the pulse signal. The delay line may include a high skew inverter having PMOS and NMOS transistors having significantly different gains. The pulse generator is configured to produce a positive going pulse signal regardless of whether the delay path is inverting or non-inverting.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: August 21, 2007
    Assignee: International Business Machines Corporation
    Inventors: Gary Dale Carpenter, Ramyanshu Datta
  • Patent number: 7216141
    Abstract: A 4-to-2 carry save adder with a reduction in the delay of outputting the sum and carry bits. The 4-to-2 carry save adder may include a lower order full order coupled to a higher order full adder. The carry save adder may further include a logic unit coupled to the higher order full adder where the logic unit is configured to generate a carry bit to be inputted to the higher order full adder that normally would be generated from the carry save adder located in the previous stage. By generating this carry bit (carry-in bit) in the current stage and not in the previous stage, the delay of the carry-in bit inputted to the higher order full adder is reduced thereby reducing the delay of outputting the sum and carry bits by the higher order full adder.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: May 8, 2007
    Assignee: International Business Machines Corporaiton
    Inventors: Wendy A. Belluomini, Ramyanshu Datta, Jente Benedict Kuang, Chandler T. McDowell, Robert K. Montoye, Hung C. Ngo
  • Publication number: 20060200716
    Abstract: An integrated circuit includes a testable delay path. A transition of a delay path input signal causes a subsequent transition of a delay path output signal. A pulse generator receives the delay path input and output signals and produces a pulse signal having a pulse width indicative of the delay between the delay path input and output signal transitions. A delay line receives the pulse signal from the pulse generator. The delay line generates information indicative of the pulse signal pulse width. The delay line may include multiple stages in series where each stage reduces the pulse width of the pulse signal. The delay line may include a high skew inverter having PMOS and NMOS transistors having significantly different gains. The pulse generator is configured to produce a positive going pulse signal regardless of whether the delay path is inverting or non-inverting.
    Type: Application
    Filed: March 3, 2005
    Publication date: September 7, 2006
    Inventors: Gary Carpenter, Ramyanshu Datta