Patents by Inventor Ran Katz

Ran Katz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120214410
    Abstract: A system for terminating a receive correlation window of a receiving wireless device includes a radio frequency receiver configured to open a receive correlation window having a predetermined duration and an energy measurement circuit configured to measure a radio frequency energy level ambient to the wireless receiver. A comparator is included that is configured to determine, based on the measured radio frequency energy level, whether or not a signal is being transmitted from a nearby wireless device. The receiver is further configured to close the receive correlation window before the predetermined duration is reached in response to a determination by the comparator that no signal is being transmitted by a nearby device. If a signal is being transmitted, then the receive correlation window is allowed to proceed uninterrupted.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Inventors: Yaniv Tzoreff, Ronen Isaac, Ran Katz, Matan Ben-Shachar
  • Patent number: 8224247
    Abstract: A novel and useful apparatus for and method of integrating the advanced audio distribution profile (A2DP) audio codec into a Bluetooth controller for audio streaming applications. The mechanism functions to break the prior art Bluetooth protocol stack by integrating a profile packet composer into the controller. The profile/stack control signaling is performed by the host while the profile data packet composer is implemented in the controller. The integrated data packet composer does not break the data path and flow control over the standard HCI. Further, the integrated packet composer allows the controller to open a dedicated data interface for specific applications (e.g., PCM/I2S for audio data).
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: July 17, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Amihai Kidron, Ran Katz, Ran Irony, Eli Dekel
  • Publication number: 20120178365
    Abstract: A contactless system is described in which energy is scavenged from an electromagnetic field provided by a proximate reader device. An embedded processor and a volatile memory circuit within a near field communication (NFC) controller are operated using the scavenged energy. Parameter data from the proximate reader device may be acquired while conducting a near field communication transaction. A non-volatile memory (NVRAM) server is coupled to the NFC controller and also operates using the scavenged energy. Parameter data may be stored within the NVRAM server by sending a command and the parameter data from the NFC controller to the NVRAM server. At the completion of the transaction, the electromagnet field may be removed and all parameter data stored within the NFC controller will be lost. However, the next time the electromagnetic field is applied, the NFC controller may retrieve the parameters from the NVRAM server by sending a command.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 12, 2012
    Inventors: Ran Katz, Koby Levy, Tally Mane
  • Patent number: 8019280
    Abstract: A dual-signal wireless transceiver is provided, comprising: a first wireless transceiver circuit configured to transmit and receive first signals using a first protocol; a second wireless transceiver circuit configured to transmit and receive second signals using a second protocol; and a control circuit configured to generate control signals to control operation of the first and second wireless transceiver circuits, wherein the first wireless transceiver circuit is configured to disable second transmission operations by the second wireless transceiver during first transmission operations by the first wireless transceiver circuit through the use of a shutdown signal. In this method, the second protocol allows the second wireless transceiver to retransmit first signals whose transmission was disabled by the shutdown signal. Furthermore, the second protocol is a Bluetooth protocol, and the first protocol is a wireless protocol other than the Bluetooth protocol.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: September 13, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Yossi Tsfaty, Ran Katz, Ran Irony
  • Patent number: 7958408
    Abstract: An on-chip receiver sensitivity test mechanism for use in an integrated RF transmitter wherein the transmitter and the receiver share the same oscillator. The mechanism obviates the need to use expensive RF signal generator test equipment with built-in modulation capability and instead permits the use of very low cost external RF test equipment. The invention utilizes circuitry already existing in the transceiver, namely the modulation circuitry and local oscillators to perform sensitivity testing. The on-chip LO is used to generate the modulated test signal that otherwise would need to be provided by expensive external RF test equipment with modulation capability. The modulated LO signal is mixed with an externally generated unmodulated CW RF signal to generate a modulated signal at IF which is subsequently processed by the remainder of the receiver chain. The recovered data bits are compared using an on-chip BER meter or counter and a BER reading is generated.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: June 7, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Elida Isabel de Obaldia, Dirk Leipold, Oren Eliezer, Ran Katz, Bogdan Staszewski
  • Publication number: 20090017756
    Abstract: A dual-signal wireless transceiver is provided, comprising: a first wireless transceiver circuit configured to transmit and receive first signals using a first protocol; a second wireless transceiver circuit configured to transmit and receive second signals using a second protocol; and a control circuit configured to generate control signals to control operation of the first and second wireless transceiver circuits, wherein the first wireless transceiver circuit is configured to disable second transmission operations by the second wireless transceiver during first transmission operations by the first wireless transceiver circuit through the use of a shutdown signal. In this method, the second protocol allows the second wireless transceiver to retransmit first signals whose transmission was disabled by the shutdown signal. Furthermore, the second protocol is a Bluetooth protocol, and the first protocol is a wireless protocol other than the Bluetooth protocol.
    Type: Application
    Filed: July 9, 2008
    Publication date: January 15, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yossi Tsfaty, Ran Katz, Ran Irony
  • Publication number: 20080287063
    Abstract: A novel and useful apparatus for and method of integrating the advanced audio distribution profile (A2DP) audio codec into a Bluetooth controller for audio streaming applications. The mechanism functions to break the prior art Bluetooth protocol stack by integrating a profile packet composer into the controller. The profile/stack control signaling is performed by the host while the profile data packet composer is implemented in the controller. The integrated data packet composer does not break the data path and flow control over the standard HCI. Further, the integrated packet composer allows the controller to open a dedicated data interface for specific applications (e.g., PCM/I2S for audio data).
    Type: Application
    Filed: May 12, 2008
    Publication date: November 20, 2008
    Inventors: Amihai Kidron, Ran Katz, Ran Irony, Eli Dekel
  • Publication number: 20080042872
    Abstract: An on-chip receiver sensitivity test mechanism for use in an integrated RF transmitter wherein the transmitter and the receiver share the same oscillator. The mechanism obviates the need to use expensive RF signal generator test equipment with built-in modulation capability and instead permits the use of very low cost external RF test equipment. The invention utilizes circuitry already existing in the transceiver, namely the modulation circuitry and local oscillators to perform sensitivity testing. Tile on-chip LO is used to generate the modulated test signal that otherwise would need to be provided by expensive external RF test equipment with modulation capability. The modulated LO signal is mixed with an externally generated unmodulated CW RF signal to generate a modulated signal at IF which is subsequently processed by the remainder of the receiver chain. The recovered data bits are compared using an on-chip BER meter or counter and a BER reading is generated.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 21, 2008
    Inventors: Elida de Obaldia, Dirk Leipold, Oren Eliezer, Ran Katz, Bogdan Staszewski
  • Patent number: 7254755
    Abstract: An on-chip receiver sensitivity test mechanism for use in an integrated RF transmitter wherein the transmitter and the receiver share the same oscillator. The mechanism obviates the need to use expensive RF signal generator test equipment with built-in modulation capability and instead permits the use of very low cost external RF test equipment. The invention utilizes circuitry already existing in the transceiver, namely the modulation circuitry and local oscillator, to perform sensitivity testing. The on-chip LO is used to generate the modulated test signal that otherwise would need to be provided by expensive external RF test equipment with modulation capability. The modulated LO signal is mixed with an externally generated unmodulated CW RF signal to generate a modulated signal at IF which is subsequently processed by the remainder of the receiver chain. The recovered data bits are compared using an on-chip BER meter or counter and a BER reading is generated.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: August 7, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Elida Isabel de Obaldia, Dirk Leipold, Oren Eliezer, Ran Katz, Bogdan Staszewski
  • Publication number: 20070109158
    Abstract: A novel and useful method and apparatus for suppressing aliasing interferers in decimating and sub-sampling discrete time systems. The present invention is operative to reduce the requirements for or completely eliminate the need for the anti-aliasing filter by dynamically modifying the sub-sampling rate (or decimation ratio). Rather than maintain a constant sampling rate (or decimation ratio), the sampling rate (or decimation ratio) is randomized such that its average remains at the nominal value and the effective jitter is low enough for the low rate (or low decimation ratio) system to tolerate. This smears or spreads interfering signals across the spectrum resulting in a noise floor at a significantly reduced level much lower than that of the original interferer signal. The interfering signals are reduced to background noise wherein the level of the resulting noise floor is not nearly as strong as the original interfering signal.
    Type: Application
    Filed: November 15, 2005
    Publication date: May 17, 2007
    Inventor: Ran Katz
  • Patent number: 7212139
    Abstract: A novel and useful method and apparatus for suppressing aliasing interferers in decimating and sub-sampling discrete time systems. The present invention is operative to reduce the requirements for or completely eliminate the need for the anti-aliasing filter by dynamically modifying the sub-sampling rate (or decimation ratio). Rather than maintain a constant sampling rate (or decimation ratio), the sampling rate (or decimation ratio) is randomized such that its average remains at the nominal value and the effective jitter is low enough for the low rate (or low decimation ratio) system to tolerate. This smears or spreads interfering signals across the spectrum resulting in a noise floor at a significantly reduced level much lower than that of the original interferer signal. The interfering signals are reduced to background noise wherein the level of the resulting noise floor is not nearly as strong as the original interfering signal.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: May 1, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Ran Katz
  • Publication number: 20060128308
    Abstract: A novel and useful low power Bluetooth page and inquiry scan mechanism. Efficient and low power page and inquiry scans are performed by measuring the energy received at each frequency and comparing it to a threshold. If the energy sensed is greater than the threshold, normal Bluetooth page or inquiry scans are then performed within the scan window. The energy sensing is done by quickly sweeping the receiver in the radio over all 79 Bluetooth frequencies in less than 68 ?s at least 19 times in order to cover at least 1.25 ms thus ensuring capturing any page or inquiry message transmissions. For noisy environments, a mechanism is provided to turn frequency sweeping off until interference is at a low enough level to reduce the number of false positive detections to an acceptable level.
    Type: Application
    Filed: November 15, 2005
    Publication date: June 15, 2006
    Inventors: Dan Michael, Ran Katz, Yaniv Tzoreff, Adi Dotan
  • Publication number: 20050088215
    Abstract: A nonlinear adaptive mechanism for amplitude adjustment and DC estimation and compensation for use in a digital receiver such as a Bluetooth GFSK receiver. The mechanism uses a feed-forward technique that can be used in a multi-stage scheme to perform both DC compensation and amplitude adjustment of an input signal for use by subsequent processing stages. In a first stage, coarse DC offset compensation is performed and the offset estimates generated are subsequently frozen. In a second stage, the incoming signal with the DC offset subtracted from it, is then scaled into a narrow predefined range of amplitudes using a scaling mechanism that works with gains and attenuations that are powers of two in order to simplify implementation. In a third stage, the scaled compensated signal is then injected again into the same DC estimation mechanism, which was previously used for DC compensation in the first stage, for further DC offset estimation and compensation (i.e. fine DC estimation and compensation).
    Type: Application
    Filed: October 22, 2003
    Publication date: April 28, 2005
    Inventors: Udi Suissa, Oren Eliezer, Ran Katz
  • Patent number: 6882208
    Abstract: A nonlinear adaptive mechanism for amplitude adjustment and DC estimation and compensation for use in a digital receiver such as a Bluetooth GFSK receiver. The mechanism uses a feed-forward technique that can be used in a multi-stage scheme to perform both DC compensation and amplitude adjustment of an input signal for use by subsequent processing stages. In a first stage, coarse DC offset compensation is performed and the offset estimates generated are subsequently frozen. In a second stage, the incoming signal with the DC offset subtracted from it, is then scaled into a narrow predefined range of amplitudes using a scaling mechanism that works with gains and attenuations that are powers of two in order to simplify implementation. In a third stage, the scaled compensated signal is then injected again into the same DC estimation mechanism, which was previously used for DC compensation in the first stage, for further DC offset estimation and compensation (i.e. fine DC estimation and compensation).
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: April 19, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Udi Suissa, Oren Eliezer, Ran Katz
  • Publication number: 20040148580
    Abstract: An on-chip receiver sensitivity test mechanism for use in an integrated RF transmitter wherein the transmitter and the receiver share the same oscillator. The mechanism obviates the need to use expensive RF signal generator test equipment with built-in modulation capability and instead permits the use of very low cost external RF test equipment. The invention utilizes circuitry already existing in the transceiver, namely the modulation circuitry and local oscillator, to perform sensitivity testing. The on-chip LO is used to generate the modulated test signal that otherwise would need to be provided by expensive external RF test equipment with modulation capability. The modulated LO signal is mixed with an externally generated unmodulated CW RF signal to generate a modulated signal at IF which is subsequently processed by the remainder of the receiver chain. The recovered data bits are compared using an on-chip BER meter or counter and a BER reading is generated.
    Type: Application
    Filed: January 16, 2004
    Publication date: July 29, 2004
    Applicant: Texas Instruments Incorporated
    Inventors: Elida Isabel de Obaldia, Dirk Leipold, Oren Eliezer, Ran Katz, Bogdan Staszewski