Patents by Inventor Rana Singh

Rana Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230343428
    Abstract: Methods, computer program products, and systems for generating adaptive temporal-based prediction scores representative of a likelihood of non-compliance with respect to a recommendation associated with a user identifier. One or more prediction-based actions can be executed based on the adaptive temporal-based prediction score satisfying a threshold.
    Type: Application
    Filed: February 6, 2023
    Publication date: October 26, 2023
    Inventors: Sriram N. Iyer, Nicholas Knaff Walker, R Arun Prasath, Ranraj Rana Singh, Diana B. Quach
  • Patent number: 11741381
    Abstract: There is a need for more effective and efficient prediction data analysis. This need can be addressed by, for example, solutions for performing first-occurrence multi-disease prediction. In one example, a method includes determining a per-event-type loss value for each event type of a group of event types; determining a cross-event-type loss value based at least in part on each per-event-type loss value; training a multi-event-type prediction model based at least in part on the cross-event type loss value; generating a first-occurrence prediction based at least in part on the multi-event-type prediction model, wherein the first occurrence-prediction comprises a first-occurrence prediction item for each event type of the group of event types; and performing one or more prediction-based actions based at least in part on the first-occurrence prediction.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: August 29, 2023
    Assignee: OPTUM TECHNOLOGY, INC.
    Inventors: V Kishore Ayyadevara, Sree Harsha Ankem, Raghav Bali, Rohan Khilnani, Vineet Shukla, Saikumar Chintareddy, Ranraj Rana Singh
  • Publication number: 20220019913
    Abstract: There is a need for more effective and efficient prediction data analysis. This need can be addressed by, for example, solutions for performing first-occurrence multi-disease prediction. In one example, a method includes determining a per-event-type loss value for each event type of a group of event types; determining a cross-event-type loss value based at least in part on each per-event-type loss value; training a multi-event-type prediction model based at least in part on the cross-event type loss value; generating a first-occurrence prediction based at least in part on the multi-event-type prediction model, wherein the first occurrence-prediction comprises a first-occurrence prediction item for each event type of the group of event types; and performing one or more prediction-based actions based at least in part on the first-occurrence prediction.
    Type: Application
    Filed: July 14, 2020
    Publication date: January 20, 2022
    Inventors: V Kishore Ayyadevara, Sree Harsha Ankem, Raghav Bali, Rohan Khilnani, Vineet Shukla, Saikumar Chintareddy, Ranraj Rana Singh
  • Publication number: 20050287810
    Abstract: Floating gates are formed in two separate polysilicon depositions steps resulting in distinct portions. The first formed portions are between isolation regions. A thick insulator is formed over the isolation regions and floating gate portions. The thick insulator is patterned to leave fences over the isolation regions. A thinning process, an isotropic etch in this example, is applied to these fences to make them thinner. Polysilicon sidewall spacers are formed on the sides of these fences. These sidewall spacers become the second portion of the floating gate. These second portions have the desired shape for significantly increasing the capacitance to the subsequently formed control gates, thereby reducing the gate voltage required for programming and erasing made by a relatively robust process.
    Type: Application
    Filed: June 28, 2004
    Publication date: December 29, 2005
    Inventors: Chi Nan Li, Cheong Hong, Rana Singh
  • Publication number: 20050156229
    Abstract: A semiconductor device has recesses formed in the substrate during removal of the anti-reflective coating (ARC) because these recess locations are exposed during the etching of the ARC. Although the etchant is chosen to be selective between the ARC material and the substrate material, this selectivity is limited so that recesses do occur. A problem associated with the formation of these recesses is that the source/drains have further to diffuse to become overlapped with the gate. The result is that the transistors may have reduced current drive. The problem is avoided by waiting to perform the ARC removal until at least after formation of a sidewall spacer around the gate. The consequent recess formation thus occurs further from the gate, which results in reducing or eliminating the impediment this recess can cause to the source/drain diffusion that desirably extends to overlap with the gate.
    Type: Application
    Filed: December 16, 2004
    Publication date: July 21, 2005
    Inventors: Geoffrey Yeap, Srinivas Jallepalli, Yongjoo Jeon, James Burnett, Rana Singh, Paul Grudowski