Patents by Inventor Randal B Chinnock

Randal B Chinnock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10004396
    Abstract: Ocular surface interferometry devices, systems, and methods are disclosed for imaging an ocular tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image, wherein the specularly reflected light may be produced from various portions of the ocular tear film by obliquely illuminating various portions of the ocular tear film with a multi-wavelength light source, such as in a tiling pattern(s). The imaging device can also be focused on the lipid layer to capture a second image containing the background signal(s) present in the first image. The second image can be subtracted from the first image to reduce and/or eliminate the background signal(s) in the first image to produce a resulting image, which can used to measure a tear film layer thickness.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: June 26, 2018
    Assignee: TearScience, Inc.
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 9999346
    Abstract: Background reduction apparatuses and methods of Ocular Surface Interferometry (OSI) employing polarization are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT) and can be used to evaluate and potentially diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in at least one image. The at least one image can be processed and analyzed to measure a tear film layer thickness (TFLT), including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT).
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: June 19, 2018
    Assignee: TearScience, Inc.
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 9854962
    Abstract: A visualization instrument comprising a display support component removably coupled to a component insertable into a target space. The insertable component includes a camera providing images of the target space. The images are presented in a display device supported by the display support component. The insertable component may be discarded after a permitted number of uses.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: January 2, 2018
    Assignee: King Systems Corporation
    Inventors: Thomas W. McGrail, Michael S. Pargett, David J. Miller, Yun Siung Tony Yeh, Randal B. Chinnock, George Grubner, Elizabeth Powell Goodrich, Paul Crosby Gregory, Gary Vincent Palladino, Brian Hack, Kristin Jugenheimer Size, Richard L. Miller
  • Publication number: 20170265739
    Abstract: Ocular surface interferometry devices, systems, and methods are disclosed for imaging an ocular tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image, wherein the specularly reflected light may be produced from various portions of the ocular tear film by obliquely illuminating various portions of the ocular tear film with a multi-wavelength light source, such as in a tiling pattern(s). The imaging device can also be focused on the lipid layer to capture a second image containing the background signal(s) present in the first image. The second image can be subtracted from the first image to reduce and/or eliminate the background signal(s) in the first image to produce a resulting image, which can used to measure a tear film layer thickness.
    Type: Application
    Filed: May 30, 2017
    Publication date: September 21, 2017
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Publication number: 20170238797
    Abstract: Background reduction apparatuses and methods of Ocular Surface Interferometry (OSI) employing polarization are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT) and can be used to evaluate and potentially diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in at least one image. The at least one image can be processed and analyzed to measure a tear film layer thickness (TFLT), including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT).
    Type: Application
    Filed: May 8, 2017
    Publication date: August 24, 2017
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 9693682
    Abstract: Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: July 4, 2017
    Assignee: TearScience, Inc.
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 9662008
    Abstract: Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: May 30, 2017
    Assignee: TearScience, Inc.
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 9642520
    Abstract: Background reduction apparatuses and methods of Ocular surface interferometry (OSI) employing polarization are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT) and can be used to evaluate and potentially diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in at least one image. The at least one image can be processed and analyzed to measure a tear film layer thickness (TFLT), including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT).
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: May 9, 2017
    Assignee: TearScience, Inc.
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 9554698
    Abstract: Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: January 31, 2017
    Assignee: TearScience, Inc.
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Publication number: 20160242640
    Abstract: Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 9408534
    Abstract: Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: August 9, 2016
    Assignee: TearScience, Inc.
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 9357915
    Abstract: Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: June 7, 2016
    Assignee: TearScience, Inc.
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 9289122
    Abstract: A camera for capturing an image of an object, for example an eye. The camera has at least two light sources and an image-sensing system having two image sensors. A multiple branch optical system transmits outgoing light from the light sources to the object, and transmits incoming light from the object to the image-sensing system. The multiple branch optical system includes an autofocusing element such as a variable power optical element that varies the focus of the incoming light. There is also an image display. There is a controller that controls the operation of the light sources, controls acquisition of images by the image-sensing system, and controls the display of images on the image display. The controller activates an autofocus light source and uses the resulting captured image to automatically adjust the image exposure parameters.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: March 22, 2016
    Assignee: Optimum Technologies, Inc.
    Inventors: Randal B. Chinnock, Frederick G. Bargoot, George Grubner, Jason P. Julian, Sarah Latta, William Weber
  • Patent number: 9179831
    Abstract: A visualization instrument comprising a display support component removably coupled to a component insertable into a target space. The insertable component includes a camera providing images of the target space. The images are presented in a display device supported by the display support component. The insertable component may be discarded after a permitted number of uses.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: November 10, 2015
    Assignee: King Systems Corporation
    Inventors: Thomas W. McGrail, Michael S. Pargett, David J. Miller, Yun Siung Tony Yeh, Randal B. Chinnock, George Grubner, Elizabeth Powell Goodrich, Richard L. Miller, Gary Vincent Palladino, Brian Hack
  • Publication number: 20150138504
    Abstract: Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for peak detection and/or determining stabilization of an ocular tear film. Embodiments disclosed herein also include various image capturing and processing methods and related systems for providing various information about a patient's ocular tear film (e.g., the lipid and aqueous layers) and a patient's meibomian glands that can be used to analyze tear film layer thickness(es) (TFLT), and related characteristics as it relates to dry eye.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 8996086
    Abstract: Embodiments of the innovation relate to method for generating an image of a tissue element. The method includes generating, by a visualization system controller, a highlighting image representation of the tissue element within a tissue region based upon a first image of the tissue element captured when a first light source illuminates the tissue region, receiving, by the visualization system controller, a second image of the tissue element within the tissue region when a second light source illuminates the tissue region, combining, by the visualization system controller, the highlighting image representation of the tissue element to the second image of the tissue element to generate a composite tissue image, and delivering, by the visualization system controller, the composite tissue image to an output device.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: March 31, 2015
    Assignee: OptimumTechnologies, Inc.
    Inventor: Randal B. Chinnock
  • Patent number: 8915592
    Abstract: Apparatuses and methods employing ocular surface interferometry (OSI) employing polarization and subtraction for imaging, processing, and/or displaying an ocular tear film are disclosed. The apparatuses and methods can be employed for measuring tear film layer thickness (TFLT) of the ocular tear film, which includes lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). An imaging device is focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device is focused on the lipid layer of the tear film to capture a second image containing background signal(s) in the first image. The second image can be subtracted from the first image to reduce and/or eliminate background signal(s) in the first image to produce a resulting image that can be analyzed to measure tear film layer thickness (TFLT).
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: December 23, 2014
    Assignee: TearScience, Inc.
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Publication number: 20140285767
    Abstract: Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 8746883
    Abstract: Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: June 10, 2014
    Assignee: TearScience, Inc.
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 8545017
    Abstract: Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: October 1, 2013
    Assignee: TearScience, Inc.
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon