Patents by Inventor Randal Hatfield

Randal Hatfield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160279611
    Abstract: The invention generally relates to three-way catalysts and catalyst formulations capable of simultaneously converting nitrogen oxides, carbon monoxide, and hydrocarbons into less toxic compounds. Such three-way catalyst formulations contain ZrO2-based mixed-metal oxide support oxides doped with an amount of lanthanide. Three-way catalyst formulations with the support oxides of the present invention demonstrate higher catalytic activity, efficiency and longevity than comparable catalysts formulated with traditional support oxides.
    Type: Application
    Filed: March 26, 2015
    Publication date: September 29, 2016
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Publication number: 20150196902
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Application
    Filed: March 26, 2015
    Publication date: July 16, 2015
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Patent number: 9073011
    Abstract: A diesel oxidation catalyst (DOC) catalytic converter for at least the conversion of carbon monoxide and hydrocarbons, removal of a fraction of particulate matter, and decrease of sulfur trioxide emissions within exhaust gases from an engine and consequently of sulfuric acid, is disclosed. The DOC may include any suitable configuration including at least a substrate and a washcoat, where the substrate has a plurality of channels, suitable porosity, offers a three-dimensional support for the washcoat, and is made of any suitable material. The washcoat may be deposited on the substrate by any suitable method, and may include a mixture of at least one or more carrier material oxides and one or more catalysts. Suitable materials for the carrier material oxides may include titanium dioxide, tin dioxide, and zirconium dioxide, among others, excluding aluminum oxide (Al2O3), which may serve for a decrease of sulfur trioxide emissions and consequently of sulfuric acid mist.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: July 7, 2015
    Inventor: Randal Hatfield
  • Patent number: 9011784
    Abstract: The invention generally relates to three-way catalysts and catalyst formulations capable of simultaneously converting nitrogen oxides, carbon monoxide, and hydrocarbons into less toxic compounds. Such three-way catalyst formulations contain ZrO2-based mixed-metal oxide support oxides doped with an amount of lanthanide. Three-way catalyst formulations with the support oxides of the present invention demonstrate higher catalytic activity, efficiency and longevity than comparable catalysts formulated with traditional support oxides.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 21, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless
  • Patent number: 9012353
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 21, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Publication number: 20140301906
    Abstract: A double impregnation method and composition for producing three way catalysts (TWC) are disclosed. The TWC may generally include a substrate, a washcoat, a first and second impregnation compositions, and optionally at least an overcoat over the impregnation compositions. The first impregnation composition may include a composition of a perovskite, base metal oxides, and alkaline earth carbonates. The method for applying the first impregnation composition may include combining all base metals in the composition, adding Pd, drying, and adding a heat treatment. The method for applying the second impregnation composition may include adding a remainder of Pd as a Pd solution over the first impregnation, drying, and applying a heat treatment.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: CDTI
    Inventor: Randal Hatfield
  • Publication number: 20140301926
    Abstract: A diesel oxidation catalyst (DOC) catalytic converter for at least the conversion of carbon monoxide and hydrocarbons, removal of a fraction of particulate matter, and decrease of sulfur trioxide emissions within exhaust gases from an engine and consequently of sulfuric acid, is disclosed. The DOC may include any suitable configuration including at least a substrate and a washcoat, where the substrate has a plurality of channels, suitable porosity, offers a three-dimensional support for the washcoat, and is made of any suitable material. The washcoat may be deposited on the substrate by any suitable method, and may include a mixture of at least one or more carrier material oxides and one or more catalysts. Suitable materials for the carrier material oxides may include titanium dioxide, tin dioxide, and zirconium dioxide, among others, excluding aluminum oxide (Al2O3), which may serve for a decrease of sulfur trioxide emissions and consequently of sulfuric acid mist.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: CDTi
    Inventor: Randal Hatfield
  • Patent number: 8685352
    Abstract: The present invention pertains to catalyst systems for nitrogen oxide, carbon monoxide, hydrocarbon, and sulfur reactions that are free or substantially free of platinum group metals. The catalyst system of the present invention comprise a substrate and a washcoat, wherein the washcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst system may optionally have an overcoat, wherein the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalysts, or mixtures thereof.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: April 1, 2014
    Assignees: ECS Holdings, Inc., Catalytic Solutions, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason Pless, Johnny Ngo, Mann Sakbodin
  • Publication number: 20130236380
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Application
    Filed: August 8, 2012
    Publication date: September 12, 2013
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Patent number: 8496896
    Abstract: The present invention relates improving the performance of nitrogen oxide reduction by exposing rich exhaust to catalysts systems comprising a catalyst, wherein the catalyst systems are free of platinum group metals. The present invention also relates to improving reduction of carbon monoxide and hydrocarbon in exhaust by introducing air into a portion of the exhaust between a first catalyst system and a second catalyst system. The present invention also relates to improving nitrogen oxide, carbon monoxide and hydrocarbon reduction by (1) exposing rich exhaust to a first catalysts system, wherein the exhaust has an R value of greater than 1.0 and the first catalyst system comprises a catalyst and is free of platinum group metals and (2) introducing air into a portion of the exhaust in between the first catalyst system and a second catalyst system, wherein the second catalyst system is free of platinum group metals.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: July 30, 2013
    Assignees: Catalytic Solutions, Inc., ECS Holdings, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Johnny Ngo, Jason Pless
  • Publication number: 20130115144
    Abstract: The invention generally relates to three-way catalysts and catalyst formulations capable of simultaneously converting nitrogen oxides, carbon monoxide, and hydrocarbons into less toxic compounds. Such three-way catalyst formulations contain ZrO2-based mixed-metal oxide support oxides doped with an amount of lanthanide. Three-way catalyst formulations with the support oxides of the present invention demonstrate higher catalytic activity, efficiency and longevity than comparable catalysts formulated with traditional support oxides.
    Type: Application
    Filed: August 8, 2012
    Publication date: May 9, 2013
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless
  • Publication number: 20100240525
    Abstract: The present invention pertains to catalyst systems for nitrogen oxide, carbon monoxide, hydrocarbon, and sulfur reactions that are free or substantially free of platinum group metals. The catalyst system of the present invention comprise a substrate and a washcoat, wherein the washcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst system may optionally have an overcoat, wherein the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalysts, or mixtures thereof.
    Type: Application
    Filed: June 1, 2010
    Publication date: September 23, 2010
    Applicant: Catalytic Solutions, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason Pless, Johnny Ngo, Mann Sakbodin
  • Publication number: 20090324469
    Abstract: The present invention relates improving the performance of nitrogen oxide reduction by exposing rich exhaust to catalysts systems comprising a catalyst, wherein the catalyst systems are free of platinum group metals. The present invention also relates to improving reduction of carbon monoxide and hydrocarbon in exhaust by introducing air into a portion of the exhaust between a first catalyst system and a second catalyst system. The present invention also relates to improving nitrogen oxide, carbon monoxide and hydrocarbon reduction by (1) exposing rich exhaust to a first catalysts system, wherein the exhaust has an R value of greater than 1.0 and the first catalyst system comprises a catalyst and is free of platinum group metals and (2) introducing air into a portion of the exhaust in between the first catalyst system and a second catalyst system, wherein the second catalyst system is free of platinum group metals.
    Type: Application
    Filed: August 26, 2008
    Publication date: December 31, 2009
    Inventors: Stephen J. Golden, Randal Hatfield, Johnny Ngo, Jason Pless
  • Publication number: 20090324468
    Abstract: The present invention pertains to catalyst systems for nitrogen oxide, carbon monoxide, hydrocarbon, and sulfur reactions that are free or substantially free of platinum group metals. The catalyst system of the present invention comprise a substrate and a washcoat, wherein the washcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst system may optionally have an overcoat, wherein the overcoat comprises at least one oxide solid, wherein the oxide solid comprises one or more selected from the group consisting of a carrier material oxide, a catalyst, and mixtures thereof. The catalyst comprises one or more selected from the group consisting of a ZPGM transition metal catalyst, a mixed metal oxide catalyst, a zeolite catalysts, or mixtures thereof.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Inventors: Stephen J. Golden, Randal Hatfield, Jason Pless, Johnny Ngo, Mann Sakbodin