Patents by Inventor Randall Eugene Youngman

Randall Eugene Youngman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11814316
    Abstract: According to one embodiment, a glass article may include SiO2, Al2O3, Li2O and Na2O. The glass article may have a softening point less than or equal to about 810° C. The glass article may also have a high temperature CTE less than or equal to about 27×10?6/° C. The glass article may also be ion exchangeable such that the glass has a compressive stress greater than or equal to about 600 MPa and a depth of layer greater than or equal to about 25 ?m after ion exchange in a salt bath comprising KNO3 at a temperature in a range from about 390° C. to about 450° C. for less than or equal to approximately 15 hours.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: November 14, 2023
    Assignee: Corning Incorporated
    Inventors: Marie Jacqueline Monique Comte, Melinda Ann Drake, Karen Leslie Geisinger, Sinue Gomez, Robert Michael Morena, Charlene Marie Smith, Randall Eugene Youngman
  • Patent number: 11708298
    Abstract: A transparent glass-ceramic composition including: of the formula Ta2-xAlxO5-x where x is less than 1; of the formula AlTaO4; of the formula AlPO4; a mixture of AlTaO4 and AlPO4; or a mixture of the formula Ta2-xAlxO5-x, AlTaO4, and AlPO4. Also disclosed are transparent glass-ceramic compositions including, for example, a dopant as defined herein, or a supplemental metal oxide or metalloid oxide of MxOy, MxM?xOy, or a mixture thereof such as oxides of Nb, Ti, W, B, or Ga, as defined herein. Also disclosed are methods of making the disclosed transparent glass-ceramic compositions, and optical articles, optical components, and optical apparatus thereof.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: July 25, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Bruce Gardiner Aitken, Randall Eugene Youngman
  • Publication number: 20220024810
    Abstract: A transparent glass-ceramic composition including: of the formula Ta2-xAlxO5-x where x is less than 1; of the formula AlTaO4; of the formula AlPO4; a mixture of AlTaO4 and AlPO4; or a mixture of the formula Ta2-xAlxO5-x, AlTaO4, and AlPO4. Also disclosed are transparent glass-ceramic compositions including, for example, a dopant as defined herein, or a supplemental metal oxide or metalloid oxide of MxOy, MxM?xOy, or a mixture thereof such as oxides of Nb, Ti, W, B, or Ga, as defined herein. Also disclosed are methods of making the disclosed transparent glass-ceramic compositions, and optical articles, optical components, and optical apparatus thereof.
    Type: Application
    Filed: October 6, 2021
    Publication date: January 27, 2022
    Inventors: Bruce Gardiner Aitken, Randall Eugene Youngman
  • Publication number: 20220002187
    Abstract: According to one embodiment, a glass article may include SiO2, Al2O3, Li2O and Na2O. The glass article may have a softening point less than or equal to about 810° C. The glass article may also have a high temperature CTE less than or equal to about 27×10?6/° C. The glass article may also be ion exchangeable such that the glass has a compressive stress greater than or equal to about 600 MPa and a depth of layer greater than or equal to about 25 ?m after ion exchange in a salt bath comprising KNO3 at a temperature in a range from about 390° C. to about 450° C. for less than or equal to approximately 15 hours.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 6, 2022
    Inventors: Marie Jacqueline Monique Comte, Melinda Ann Hourihan, Karen Leslie Geisinger, Sinue Gomez-Mower, Robert Michael Morena, Charlene Marie Smith, Randall Eugene Youngman
  • Patent number: 11168020
    Abstract: A transparent glass-ceramic composition including: of the formula Ta2-xAlxO5-x where x is less than 1; of the formula AlTaO4; of the formula AlPO4; a mixture of AlTaO4 and AlPO4; or a mixture of the formula Ta2-xAlxO5-x, AlTaO4, and AlPO4. Also disclosed are transparent glass-ceramic compositions including, for example, a dopant as defined herein, or a supplemental metal oxide or metalloid oxide of MxOy, MxM?x?Oy, or a mixture thereof such as oxides of Nb, Ti, W, B, or Ga, as defined herein. Also disclosed are methods of making the disclosed transparent glass-ceramic compositions, and optical articles, optical components, and optical apparatus thereof.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: November 9, 2021
    Assignee: Corning Incorporated
    Inventors: Bruce Gardiner Aitken, Randall Eugene Youngman
  • Patent number: 11139473
    Abstract: A porous silicon composition, a porous alloy composition, or a porous silicon containing cermet composition, as defined herein. A method of making: the porous silicon composition; the porous alloy composition, or the porous silicon containing cermet composition, as defined herein. Also disclosed is an electrode, and an energy storage device incorporating the electrode and at least one of the disclosed compositions, as defined herein.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: October 5, 2021
    Assignee: Corning Incorporated
    Inventors: Indrajit Dutta, Brian Alan Kent, Patrick David Tepesch, Shawn Michael O'Malley, Randall Eugene Youngman
  • Patent number: 11124444
    Abstract: According to one embodiment, a glass article may include SiO2, Al2O3, Li2O and Na2O. The glass article may have a softening point less than or equal to about 810° C. The glass article may also have a high temperature CTE less than or equal to about 27×10?6/° C. The glass article may also be ion exchangeable such that the glass has a compressive stress greater than or equal to about 600 MPa and a depth of layer greater than or equal to about 25 ?m after ion exchange in a salt bath comprising KNO3 at a temperature in a range from about 390° C. to about 450° C. for less than or equal to approximately 15 hours.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: September 21, 2021
    Assignee: Corning Incorporated
    Inventors: Marie Jacqueline Monique Comte, Melinda Ann Drake, Karen Leslie Geisinger, Sinue Gomez, Robert Michael Morena, Charlene Marie Smith, Randall Eugene Youngman
  • Publication number: 20210078897
    Abstract: A transparent glass-ceramic composition including: of the formula Ta2-x AlxO5-x where x is less than 1; of the formula AlTaO4; of the formula AlPO4; a mixture of AlTaO4 and AlPO4; or a mixture of the formula Ta2-x AlxO5-x, AlTaO4, and AlPO4. Also disclosed are transparent glass-ceramic compositions including, for example, a dopant as defined herein, or a supplemental metal oxide or metalloid oxide of MxOy, MxM?x?Oy, or a mixture thereof such as oxides of Nb, Ti, W, B, or Ga, as defined herein. Also disclosed are methods of making the disclosed transparent glass-ceramic compositions, and optical articles, optical components, and optical apparatus thereof.
    Type: Application
    Filed: February 5, 2019
    Publication date: March 18, 2021
    Inventors: Bruce Gardiner Aitken, Randall Eugene Youngman
  • Patent number: 10781131
    Abstract: Crystallizable glasses, glass-ceramics, IXable glass-ceramics, and IX glass-ceramics are disclosed. The glass-ceramics exhibit ?-spodumene ss as the predominant crystalline phase. These glasses and glass-ceramics, in mole %, include: 60-75 SiO2; 10-18 Al2O3; 5-14 Li2O; and 4.5 B2O3. The glass-ceramics also have a Vickers initiation crack threshold of at least about 25 kgf.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: September 22, 2020
    Assignee: CORNING INCORPORATED
    Inventors: George Halsey Beall, Qiang Fu, Charlene Marie Smith, Randall Eugene Youngman
  • Publication number: 20200220170
    Abstract: A porous silicon composition, a porous alloy composition, or a porous silicon containing cermet composition, as defined herein. A method of making: the porous silicon composition; the porous alloy composition, or the porous silicon containing cermet composition, as defined herein. Also disclosed is an electrode, and an energy storage device incorporating the electrode and at least one of the disclosed compositions, as defined herein.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Inventors: Indrajit Dutta, Brian Alan Kent, Patrick David Tepesch, Shawn Michael O'Malley, Randall Eugene Youngman
  • Patent number: 10629900
    Abstract: A porous silicon composition, a porous alloy composition, or a porous silicon containing cermet composition, as defined herein. A method of making: the porous silicon composition; the porous alloy composition, or the porous silicon containing cermet composition, as defined herein. Also disclosed is an electrode, and an energy storage device incorporating the electrode and at least one of the disclosed compositions, as defined herein.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: April 21, 2020
    Assignee: Corning Incorporated
    Inventors: Indrajit Dutta, Brian Alan Kent, Patrick David Tepesch, Shawn Michael O'Malley, Randall Eugene Youngman
  • Patent number: 10439206
    Abstract: Silicon-silica hybrid materials made by metallothermal reduction from silica and methods of producing such compositions are provided. The compositions have novel properties and provide significant improvements in Coulombic efficiency, dilithiation capacity, and cycle life when used as anode materials in lithium battery cells.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: October 8, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Francis Martin Behan, Indrajit Dutta, Brian Alan Kent, Shawn Michael O'Malley, Vitor Marino Schneider, Randall Eugene Youngman
  • Publication number: 20190152834
    Abstract: Crystallizable glasses, glass-ceramics, IXable glass-ceramics, and IX glass-ceramics are disclosed. The glass-ceramics exhibit ?-spodumene ss as the predominant crystalline phase. These glasses and glass-ceramics, in mole %, include: 60-75 SiO2; 10-18 Al2O3; 5-14 Li2O; and 4.5 B2O3. The glass-ceramics also have a Vickers initiation crack threshold of at least about 25 kgf.
    Type: Application
    Filed: January 25, 2019
    Publication date: May 23, 2019
    Inventors: George Halsey Beall, Qiang Fu, Charlene Marie Smith, Randall Eugene Youngman
  • Publication number: 20190092679
    Abstract: According to one embodiment, a glass article may include SiO2, Al2O3, Li2O and Na2O. The glass article may have a softening point less than or equal to about 810° C. The glass article may also have a high temperature CTE less than or equal to about 27×10?6/° C. The glass article may also be ion exchangeable such that the glass has a compressive stress greater than or equal to about 600 MPa and a depth of layer greater than or equal to about 25 ?m after ion exchange in a salt bath comprising KNO3 at a temperature in a range from about 390° C. to about 450° C. for less than or equal to approximately 15 hours.
    Type: Application
    Filed: November 6, 2018
    Publication date: March 28, 2019
    Inventors: Marie Jacqueline Monique Comte, Melinda Ann Drake, Karen Leslie Geisinger, Sinue Gomez, Robert Michael Morena, Charlene Marie Smith, Randall Eugene Youngman
  • Patent number: 10189735
    Abstract: Crystallizable glasses, glass-ceramics, IXable glass-ceramics, and IX glass-ceramics are disclosed. The glass-ceramics exhibit ?-spodumene ss as the predominant crystalline phase. These glasses and glass-ceramics, in mole %, include: 60-75 SiO2; 10-18 Al2O3; 5-14 Li2O; and 4.5 B2O3. The glass-ceramics also have a Vickers initiation crack threshold of at least about 25 kgf.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: January 29, 2019
    Assignee: CORNING INCORPORATED
    Inventors: George Halsey Beall, Qiang Fu, Charlene Marie Smith, Randall Eugene Youngman
  • Patent number: 10183887
    Abstract: According to one embodiment, a glass article may include SiO2, Al2O3, Li2O and Na2O. The glass article may have a softening point less than or equal to about 810° C. The glass article may also have a high temperature CTE less than or equal to about 27×10?6/° C. The glass article may also be ion exchangeable such that the glass has a compressive stress greater than or equal to about 600 MPa and a depth of layer greater than or equal to about 25 ?m after ion exchange in a salt bath comprising KNO3 at a temperature in a range from about 390° C. to about 450° C. for less than or equal to approximately 15 hours.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 22, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Marie Jacqueline Monique Comte, Melinda Ann Drake, Karen Leslie Geisinger, Sinue Gomez, Robert Michael Morena, Charlene Marie Smith, Randall Eugene Youngman
  • Patent number: 10150691
    Abstract: According to one embodiment, a glass article may include SiO2, Al2O3, Li2O and Na2O. The glass article may have a softening point less than or equal to about 810° C. The glass article may also have a high temperature CTE less than or equal to about 27×10?6/° C. The glass article may also be ion exchangeable such that the glass has a compressive stress greater than or equal to about 600 MPa and a depth of layer greater than or equal to about 25 ?m after ion exchange in a salt bath comprising KNO3 at a temperature in a range from about 390° C. to about 450° C. for less than or equal to approximately 15 hours.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: December 11, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Marie Jacqueline Monique Comte, Melinda Ann Drake, Karen Leslie Geisinger, Sinue Gomez, Robert Michael Morena, Charlene Marie Smith, Randall Eugene Youngman
  • Publication number: 20180022638
    Abstract: According to one embodiment, a glass article may include SiO2, Al2O3, Li2O and Na2O. The glass article may have a softening point less than or equal to about 810° C. The glass article may also have a high temperature CTE less than or equal to about 27×10?6/° C. The glass article may also be ion exchangeable such that the glass has a compressive stress greater than or equal to about 600 MPa and a depth of layer greater than or equal to about 25 ?m after ion exchange in a salt bath comprising KNO3 at a temperature in a range from about 390° C. to about 450° C. for less than or equal to approximately 15 hours.
    Type: Application
    Filed: September 28, 2017
    Publication date: January 25, 2018
    Inventors: Marie Jacqueline Monique Comte, Melinda Ann Drake, Karen Leslie Geisinger, Sinue Gomez, Robert Michael Morena, Charlene Marie Smith, Randall Eugene Youngman
  • Publication number: 20170327406
    Abstract: Crystallizable glasses, glass-ceramics, IXable glass-ceramics, and IX glass-ceramics are disclosed. The glass-ceramics exhibit ?-spodumene ss as the predominant crystalline phase. These glasses and glass-ceramics, in mole %, include: 60-75 SiO2; 10-18 Al2O3; 5-14 Li2O; and 4.5 B2O3. The glass-ceramics also have a Vickers initiation crack threshold of at least about 25 kgf.
    Type: Application
    Filed: August 3, 2017
    Publication date: November 16, 2017
    Inventors: George Halsey Beall, Qiang Fu, Charlene Marie Smith, Randall Eugene Youngman
  • Patent number: 9751798
    Abstract: Crystallizable glasses, glass-ceramics, IXable glass-ceramics, and IX glass-ceramics are disclosed. The glass-ceramics exhibit ?-spodumene ss as the predominant crystalline phase. These glasses and glass-ceramics, in mole %, include: 60-75 SiO2; 10-18 Al2O3; 5-14 Li2O; and 4.5 B2O3. The glass-ceramics also have a Vickers initiation crack threshold of at least about 25 kgf.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: September 5, 2017
    Assignee: CORNING INCORPORATED
    Inventors: George Halsey Beall, Qiang Fu, Charlene Marie Smith, Randall Eugene Youngman