Patents by Inventor Randall Higuchi

Randall Higuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170117282
    Abstract: Embodiments provided herein describe capacitor stacks and methods for forming capacitor stacks. A first electrode is formed above a substrate. A dielectric layer is formed above the first electrode. The dielectric layer includes zirconium. A second electrode is formed above the dielectric layer. At least one of the first electrode and the second electrode includes iridium.
    Type: Application
    Filed: October 25, 2016
    Publication date: April 27, 2017
    Applicant: Intermolecular, Inc.
    Inventors: Monica S. Mathur, Randall Higuchi, Thong Quang Ngo, Sandip Niyogi, Prashant Phatak
  • Patent number: 9543516
    Abstract: Methods for producing RRAM resistive switching elements having reduced forming voltage include doping to create oxygen deficiencies in the dielectric film. Oxygen deficiencies in a dielectric film promote formation of conductive pathways.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: January 10, 2017
    Assignees: Intermolecular, Inc., SanDisk 3D LLC, Kabushiki Kaisha Toshiba
    Inventors: Jinhong Tong, Randall Higuchi, Imran Hashim, Vidyut Gopal
  • Publication number: 20160172588
    Abstract: Methods for producing RRAM resistive switching elements having reduced forming voltage include doping to create oxygen deficiencies in the dielectric film. Oxygen deficiencies in a dielectric film promote formation of conductive pathways.
    Type: Application
    Filed: June 27, 2014
    Publication date: June 16, 2016
    Inventors: Jinhong Tong, Randall Higuchi, Imran Hashim, Vidyut Gopal
  • Patent number: 8846443
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: September 30, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Zhendong Hong, Hieu Pham, Randall Higuchi, Vidyut Gopal, Imran Hashim, Tim Minvielle, Takeshi Yamaguchi
  • Patent number: 8802492
    Abstract: Methods for producing RRAM resistive switching elements having reduced forming voltage include doping to create oxygen deficiencies in the dielectric film. Oxygen deficiencies in a dielectric film promote formation of conductive pathways.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: August 12, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Jinhong Tong, Randall Higuchi, Imran Hashim, Vidyut Gopal
  • Patent number: 8791445
    Abstract: A nonvolatile resistive memory element includes a host oxide formed from an interfacial oxide layer. The interfacial oxide layer is formed on the surface of a deposited electrode layer via in situ or post-deposition surface oxidation treatments.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: July 29, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Randall Higuchi, Tony P. Chiang, Ryan Clarke, Vidyut Gopal, Imran Hashim, Robert Huertas, Yun Wang
  • Patent number: 8741698
    Abstract: Atomic layer deposition (ALD) can be used to form a dielectric layer of zirconium oxide for use in a variety of electronic devices. Forming the dielectric layer includes depositing zirconium oxide using atomic layer deposition. A method of atomic layer deposition to produce a metal-rich metal oxide comprises the steps of providing a silicon substrate in a reaction chamber, pulsing a zirconium precursor for a predetermined time to deposit a first layer, and oxidizing the first layer with water vapor to produce the metal-rich metal oxide. The metal-rich metal oxide has superior properties for non-volatile resistive-switching memories.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: June 3, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Jinhong Tong, Vidyut Gopal, Imran Hashim, Randall Higuchi, Albert Lee
  • Publication number: 20130228735
    Abstract: A nonvolatile resistive memory element includes a host oxide formed from an interfacial oxide layer. The interfacial oxide layer is formed on the surface of a deposited electrode layer via in situ or post-deposition surface oxidation treatments. The switching performance of a resistive memory device based on such an interfacial oxide layer is equivalent or superior to the performance of a conventional resistive memory element.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 5, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Randall Higuchi, Tony P. Chiang, Ryan Clarke, Vidyut Gopal, Imran Hashim, Robert Huertas, Yun Wang
  • Publication number: 20130134376
    Abstract: Atomic layer deposition (ALD) can be used to form a dielectric layer of zirconium oxide for use in a variety of electronic devices. Forming the dielectric layer includes depositing zirconium oxide using atomic layer deposition. A method of atomic layer deposition to produce a metal-rich metal oxide comprises the steps of providing a silicon substrate in a reaction chamber, pulsing a zirconium precursor for a predetermined time to deposit a first layer, and oxidizing the first layer with water vapor to produce the metal-rich metal oxide. The metal-rich metal oxide has superior properties for non-volatile resistive-switching memories.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Jinhong Tong, Vidyut Gopal, Imran Hashim, Randall Higuchi, Albert Lee
  • Publication number: 20130048937
    Abstract: Methods for producing RRAM resistive switching elements having reduced forming voltage include doping to create oxygen deficiencies in the dielectric film. Oxygen deficiencies in a dielectric film promote formation of conductive pathways.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Applicant: INTERMOLECULAR, INC.
    Inventors: Jinhong Tong, Randall Higuchi, Imran Hashim, Vidyut Gopal
  • Publication number: 20130034947
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 7, 2013
    Applicant: INTERMOLECULAR, INC.
    Inventors: Zhendong Hong, Hieu Pham, Randall Higuchi, Vidyut Gopal, Imran Hashim
  • Publication number: 20060051506
    Abstract: A method of making high-k dielectrics is provided. The method comprises providing a substrate having a high-k dielectric layer deposited thereon in a process chamber and introducing a nitrogen containing gas into the process chamber to incorporate nitrogen into the high-k dielectric layer. In one embodiment, the nitrogen containing gas is a nitrogen plasma gas from a source disposed outside the process chamber. The nitrogen plasma gas is introduced into the process chamber at a flow rate from 0 to about 5000 sccm over a time period of about 20 to 1800 seconds. In another embodiment, the process chamber is maintained at a pressure of about 1 to 100 Torr, and at a wafer temperature in the range of about 200° C.-700° C. The high-k dielectric film pre-deposited on the substrate can be formed by atomic layer deposition, chemical vapor deposition (CVD), physical vapor deposition (PVD), jet vapor deposition (JVD), aerosol pyrolysis, and spin-coating.
    Type: Application
    Filed: December 1, 2004
    Publication date: March 9, 2006
    Inventors: Yoshihide Senzaki, Craig Bercaw, Robert Chatham, Randall Higuchi, Eugene Lopata