Patents by Inventor Randall Jeffrey Platt

Randall Jeffrey Platt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11041173
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery systems and tissues or organ which are targeted as sites for delivery. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: June 22, 2021
    Assignees: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Feng Zhang, Randall Jeffrey Platt, Guoping Feng, Yang Zhou
  • Publication number: 20200340015
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery particle formulations and/or systems comprising one or more components of a CRISPR-Cas system, which are means for targeting sites for delivery. The delivery particle formulations of the invention are preferably nanoparticle delivery formulations and/or systems. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 29, 2020
    Applicants: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: James DAHLMAN, Randall Jeffrey PLATT, Daniel G. ANDERSON, Robert S. LANGER, Feng ZHANG
  • Publication number: 20200080094
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas system.
    Type: Application
    Filed: August 7, 2019
    Publication date: March 12, 2020
    Inventors: Feng Zhang, Le Cong, David Benjamin Turitz Cox, Patrick Hsu, Shuailiang Lin, Fei Ran, Randall Jeffrey Platt, Neville Espi Sanjana
  • Publication number: 20200063147
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas system.
    Type: Application
    Filed: August 5, 2019
    Publication date: February 27, 2020
    Inventors: Feng Zhang, Le Cong, David Benjamin Turitz Cox, Patrick Hsu, Shuailiang Lin, Fei Ran, Randall Jeffrey Platt, Neville Espi Sanjana
  • Publication number: 20200032278
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas system.
    Type: Application
    Filed: June 18, 2019
    Publication date: January 30, 2020
    Inventors: Feng Zhang, Le Cong, David Benjamin Turitz Cox, Patrick Hsu, Shuailiang Lin, Fei Ran, Randall Jeffrey Platt, Neville Espi Sanjana
  • Publication number: 20200032277
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas system.
    Type: Application
    Filed: June 18, 2019
    Publication date: January 30, 2020
    Inventors: Feng Zhang, Le Cong, David Benjamin Turitz Cox, Patrick Hsu, Shuailiang Lin, Fei Ran, Randall Jeffrey Platt, Neville Espi Sanjana
  • Publication number: 20190040399
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/CAS system.
    Type: Application
    Filed: April 30, 2018
    Publication date: February 7, 2019
    Inventors: Feng ZHANG, Le CONG, David Benjamin Turitz COX, Patrick HSU, Shuailiang LIN, Fei RAN, Randall Jeffrey PLATT, Neville Espi SANJANA
  • Publication number: 20190017058
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/CAS system.
    Type: Application
    Filed: April 30, 2018
    Publication date: January 17, 2019
    Inventors: Feng Zhang, Le CONG, David Benjamin Turitz COX, Patrick HSU, Shuailiang LIN, Fei RAN, Randall Jeffrey PLATT, Neville Espi SANJANA
  • Publication number: 20180327756
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas system.
    Type: Application
    Filed: August 5, 2016
    Publication date: November 15, 2018
    Inventors: Feng Zhang, Le Cong, David Benjamin Turitz Cox, Patrick Hsu, Shuailiang Lin, Fei Ran, Randall Jeffrey Platt, Neville Espi Sanjana
  • Publication number: 20180112255
    Abstract: The present invention relates to in vivo methods for modeling tumor formation and/or tumor evolution comprising the use of eukaryotic cells in which one or more genetic target locus has been altered by the CRISPR/Cas system, and which cells are transplanted in non-human eukaryote as a model system for tumor formation and tumor evolution. In particular in vivo genetic screening methods for identifying genes involved in tumorigenesis and metastasis are disclosed. The invention further relates to kits and components for practicing the methods, as well as materials obtainable by the methods, in particular tumor and metastasis samples and cells or cell lines derived therefrom. The invention also relates to diagnostic and therapeutic methods derived from the information obtained in the modeling methods.
    Type: Application
    Filed: June 30, 2017
    Publication date: April 26, 2018
    Inventors: Sidi Chen, Randall Jeffrey Platt, Neville Espi Sanjana, Phillip A. Sharp, Feng Zhang
  • Publication number: 20180044662
    Abstract: The invention involves inducing a plurality e.g., 3-50 or more mutations (e.g., any whole number between 3 and 50 or more of mutations, with it noted that in some embodiments there can be up to 16 different RNA(s), e.g., sgRNAs each having its own a promoter, in a vector, such an AAV vector or a lentiviral vector and that when each sgRNA does not have its own promoter, there can be twice to thrice that amount of different RNA(s), e.g., sgRNAs, e.g., 32 or even 48 different guides delivered by one vector) in transgenic Cas9 eukaryotes to model a neuronal disease or disorder. The invention comprehends testing putative treatments with such models, e.g., testing putative chemical compounds that may be pharmaceutically relevant for treatment or gene therapy that may be relevant for treatment, or combinations thereof. The invention allows for the study of genetic diseases and putative treatments to better understand and alleviate a genetic disease or a condition, e.g.
    Type: Application
    Filed: March 23, 2017
    Publication date: February 15, 2018
    Inventors: Randall Jeffrey PLATT, Feng ZHANG, Ian SLAYMAKER
  • Publication number: 20180010134
    Abstract: The invention involves inducing 3-50 or more mutations (e.g., any whole number between 3 and 50 of mutations, with it noted that in some embodiments there can be up to 16 different RNA(s), e.g., sgRNAs each having its own a promoter, in a vector, such as AAV, and that when each sgRNA does not have its own promoter, there can be twice to thrice that amount of different RNA(s), e.g., sgRNAs, e.g., 32 or even 48 different guides delivered by one vector) in transgenic Cas9 eukaryotes to model genetic disease, e.g. cancer. The invention comprehends testing putative treatments with such models, e.g., testing putative chemical compounds that may be pharmaceutically relevant for treatment or gene therapy that may be relevant for treatment, or combinations thereof. The invention allows for the study of genetic diseases and putative treatments to better understand and alleviate a genetic disease or a condition, e.g., cancer.
    Type: Application
    Filed: March 23, 2017
    Publication date: January 11, 2018
    Inventors: PHILLIP A. SHARP, Feng Zhang, Randall Jeffrey Platt, Sidi Chen
  • Publication number: 20170107536
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery systems and tissues or organ which are targeted as sites for delivery. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Application
    Filed: November 11, 2016
    Publication date: April 20, 2017
    Inventors: Feng Zhang, Randall Jeffrey Platt, Guoping Feng, Yang Zhou
  • Publication number: 20160340661
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery systems and tissues or organ which are targeted as sites for delivery. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Application
    Filed: June 10, 2016
    Publication date: November 24, 2016
    Inventors: Le Cong, David Benjamin Turitz Cox, Matthias Heidenreich, Randall Jeffrey Platt, Lukasz Swiech, Feng Zhang
  • Publication number: 20150291965
    Abstract: The invention provides for engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors with additional functional domains. Also provided are methods of directing CRISPR complex formation in prokaryotic and eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity.
    Type: Application
    Filed: June 12, 2015
    Publication date: October 15, 2015
    Inventors: Feng Zhang, Le Cong, Randall Jeffrey Platt, Neville Espi Sanjana, Fei Ran
  • Publication number: 20150232883
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery particle formulations and/or systems comprising one or more components of a CRISPR-Cas system, which are means for targeting sites for delivery. The delivery particle formulations of the invention are preferably nanoparticle delivery formulations and/or systems. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Application
    Filed: May 6, 2015
    Publication date: August 20, 2015
    Inventors: James Dahlman, Randall Jeffrey Platt, Daniel G. Anderson, Robert S. Langer, Feng Zhang
  • Patent number: 8999641
    Abstract: The invention provides for engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors with additional functional domains. Also provided are methods of directing CRISPR complex formation in prokaryotic and eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: April 7, 2015
    Assignees: The Broad Institute Inc., Maassachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: Feng Zhang, Le Cong, Randall Jeffrey Platt, Neville Espi Sanjana
  • Patent number: 8993233
    Abstract: The invention provides for engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors with additional functional domains. Also provided are methods of directing CRISPR complex formation in prokaryotic and eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: March 31, 2015
    Assignees: The Broad Institute Inc., Massachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: Feng Zhang, Le Cong, Randall Jeffrey Platt, Neville Espi Sanjana, Fei Ran
  • Publication number: 20150020223
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery systems and tissues or organ which are targeted as sites for delivery. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Application
    Filed: September 9, 2014
    Publication date: January 15, 2015
    Inventors: Feng Zhang, Randall Jeffrey Platt, Guoping Feng, Yang Zhou
  • Publication number: 20140256046
    Abstract: The invention provides for engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors with additional functional domains. Also provided are methods of directing CRISPR complex formation in prokaryotic and eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity.
    Type: Application
    Filed: March 26, 2014
    Publication date: September 11, 2014
    Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE BROAD INSTITUTE, INC.
    Inventors: Feng Zhang, Le Cong, Randall Jeffrey Platt, Neville Espi Sanjana