Patents by Inventor Randall L. Simpson

Randall L. Simpson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8765080
    Abstract: A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: July 1, 2014
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Peter J. Nunes, Joel Del Eckels, John G. Reynolds, Philip F. Pagoria, Randall L. Simpson
  • Patent number: 8328967
    Abstract: Sol-gel chemistry is used to prepare igniters comprising energetic multilayer structures coated with energetic materials. These igniters can be tailored to be stable to environmental aging, i.e., where the igniters are exposed to extremes of both hot and cold temperatures (?30 C to 150 C) and both low (0%) and high relative humidity (100%).
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: December 11, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Troy W. Barbee, Jr., Randall L. Simpson, Alexander E. Gash, Joe H. Satcher, Jr.
  • Patent number: 8172964
    Abstract: A method for creating a pyrophoric material according to one embodiment includes thermally activating a carbon foam for creating micropores therein; contacting the activated carbon foam with a liquid solution comprising a metal salt for depositing metal ions in the carbon foam; and reducing the metal ions in the foam to metal particles. A pyrophoric material in yet another embodiment includes a pyrophoric metal-carbon foam composite comprising a carbon foam having micropores and mesopores and a surface area of greater than or equal to about 2000 m2/g, and metal particles in the pores of the carbon foam. Additional methods and materials are also disclosed.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: May 8, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Alexander E. Gash, Joe H. Satcher, Jr., Randall L. Simpson, Theodore F. Baumann, Marcus A. Worsley
  • Patent number: 8075716
    Abstract: Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: December 13, 2011
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Randall L. Simpson, Ronald S. Lee, Thomas M. Tillotson, Lawrence W. Hrubesh, Rosalind W. Swansiger, Glenn A. Fox
  • Patent number: 8025856
    Abstract: A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: September 27, 2011
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Peter J. Nunes, Joel Del Eckels, John G. Reynolds, Philip F. Pagoria, Randall L. Simpson
  • Publication number: 20110203714
    Abstract: Sol-gel chemistry is used to prepare igniters comprising energetic multilayer structures coated with energetic materials. These igniters can be tailored to be stable to environmental aging, i.e., where the igniters are exposed to extremes of both hot and cold temperatures (?30 C to 150 C) and both low (0%) and high relative humidity (100%).
    Type: Application
    Filed: May 3, 2011
    Publication date: August 25, 2011
    Inventors: Troy W. Barbee, JR., Randall L. Simpson, Alexander E. Gash, Joe H. Satcher, JR.
  • Patent number: 7951247
    Abstract: Sol-gel chemistry is used to prepare igniters comprising energetic multilayer structures coated with energetic booster materials. These igniters can be tailored to be stable to environmental aging, i.e., where the igniters are exposed to extremes of both hot and cold temperatures (?30 C to 150 C) and both low (0%) and high relative humidity (100%).
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: May 31, 2011
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Troy W. Barbee, Jr., Randall L. Simpson, Alexander E. Gash, Joe H. Satcher, Jr.
  • Publication number: 20110083661
    Abstract: A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200° C.
    Type: Application
    Filed: December 3, 2010
    Publication date: April 14, 2011
    Inventors: J. Del Eckels, Peter J. Nunes, Randall L. Simpson, Stefan Hau-Riege, Chris Walton, J. Chance Carter, John G. Reynolds
  • Patent number: 7867441
    Abstract: A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200° C.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: January 11, 2011
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: J. Del Eckels, Peter J. Nunes, Randall L. Simpson, Stefan Hau-Riege, Chris Walton, J. Chance Carter, John G. Reynolds
  • Publication number: 20100267541
    Abstract: A method for producing ceramic materials utilizing the sol-gel process enables the preparation of intimate homogeneous dispersions of materials while offering the ability to control the size of one component within another. The method also enables the preparation of materials that densify at reduced temperatures. Applications of the compositions include filters, solid-oxide fuel cells, membranes, ceramic cutting tools and wear and auto parts. In one example, 10 g of AlCl6.6H2O is added to a 150 ml beaker and dissolved in 10 g EtOH and 1 g H2O. While stirring, 0.456 g of B4C powder is added. Then 9.6 g of propylene oxide is added. The gel sets up in about 10 minutes and is dried overnight. It is then washed with 1% NH4OH and air dried to yield 3.969 g of Al2O3/B4C xerogel.
    Type: Application
    Filed: June 28, 2006
    Publication date: October 21, 2010
    Inventors: Joe H. Satcher, JR., Alexander E. Gash, Randall L. Simpson, Richard L. Landingham, Robert A. Reibold
  • Patent number: 7807104
    Abstract: An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: October 5, 2010
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jeffrey S. Haas, Randall L. Simpson, Joe H. Satcher
  • Patent number: 7771653
    Abstract: An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: August 10, 2010
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Joel Del Eckels, Peter J. Nunes, Randall L. Simpson, Richard E. Whipple, J. Chance Carter, John G. Reynolds
  • Publication number: 20100139823
    Abstract: A method for creating a pyrophoric material according to one embodiment includes thermally activating a carbon foam for creating micropores therein; contacting the activated carbon foam with a liquid solution comprising a metal salt for depositing metal ions in the carbon foam; and reducing the metal ions in the foam to metal particles. A pyrophoric material in yet another embodiment includes a pyrophoric metal-carbon foam composite comprising a carbon foam having micropores and mesopores and a surface area of greater than or equal to about 2000 m2/g, and metal particles in the pores of the carbon foam. Additional methods and materials are also disclosed.
    Type: Application
    Filed: December 5, 2008
    Publication date: June 10, 2010
    Inventors: Alexander E. Gash, Joe H. Satcher, JR., Randall L. Simpson, Theodore F. Baumann, Marcus A. Worsley
  • Publication number: 20080131316
    Abstract: A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200° C.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 5, 2008
    Inventors: J. Del Eckels, Peter J. Nunes, Randall L. Simpson, Stefan Hau-Riege, Chris Walton, J. Chance Carter, John G. Reynolds
  • Patent number: 7294306
    Abstract: An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: November 13, 2007
    Assignee: The Regents of the University of California
    Inventors: Jeffrey S. Haas, Randall L. Simpson, Joe H. Satcher
  • Patent number: 6986818
    Abstract: A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe3+, Cr3+, Al3+, Ga3+, In3+, Hf4+, Sn4+, Zr4+, Nb5+, W6+, Pr3+, Er3+, Nd3+, Ce3+, U3+ and Y3+.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: January 17, 2006
    Assignee: The Regents of the University of California
    Inventors: Thomas M. Tillotson, Randall L. Simpson, Lawrence W. Hrubesh, Alexander Gash
  • Patent number: 6986819
    Abstract: A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: January 17, 2006
    Assignee: The Regents of the University of California
    Inventors: Thomas M. Tillotson, Randall L. Simpson, Lawrence W. Hrubesh
  • Patent number: 6893518
    Abstract: Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: May 17, 2005
    Assignee: The Regents of the University of California
    Inventors: Randall L. Simpson, Ronald S. Lee, Thomas M. Tillotson, Lawrence W. Hrubesh, Rosalind W. Swansiger, Glenn A. Fox
  • Publication number: 20040265169
    Abstract: An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.
    Type: Application
    Filed: June 30, 2003
    Publication date: December 30, 2004
    Applicant: The Regents of the University of California
    Inventors: Jeffrey S. Haas, Randall L. Simpson, Joe H. Satcher
  • Publication number: 20040060626
    Abstract: A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite.
    Type: Application
    Filed: April 24, 2003
    Publication date: April 1, 2004
    Applicant: The Regents of the University of California
    Inventors: Thomas M. Tillotson, Randall L. Simpson, Lawrence W. Hrubesh