Patents by Inventor Randall Mark Stoltenberg

Randall Mark Stoltenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11031704
    Abstract: A cable can be used to facilitate electrical connections between electrical components. The cable can include a plurality of cable strands forming a void space. An adhesive paste can be applied within the void space. The adhesive paste can include a plurality of metallic nanoparticles. The metallic nanoparticles can fuse with each other and with the plurality of cable strands when energy is applied the connector and the cable. The metallic nanoparticles can include a surfactant, which can be displaced as pressure is applied. Heat can be applied to the adhesive paste to fuse the metallic nanoparticles.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: June 8, 2021
    Assignee: Lockheed Martin Corporation
    Inventors: Randall Mark Stoltenberg, Alfred Zinn
  • Patent number: 10919281
    Abstract: A circuit assembly can be made by adhering a conductive element to a substrate with an adhesive. A first layer including an adhesive can be applied over at least a portion of a surface of the substrate. A second layer including a conductive metal can be applied over at least a portion of the first layer. The first layer and the second layer can be exposed to a temperature for a duration of time to (1) fuse the conductive metal together in at least a portion of the first layer and (2) cure the adhesive of the second layer. The fusing can be substantially complete before the curing is substantially complete to enhance bonding of the adhesive to the fused conductive metal.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: February 16, 2021
    Assignee: Lockheed Martin Corporation
    Inventors: Randall Mark Stoltenberg, Alfred A. Zinn
  • Patent number: 10500546
    Abstract: It can be difficult to remove atomically thin films, such as graphene, graphene-based material and other two-dimensional materials, from a growth substrate and then to transfer the thin films to a secondary substrate. Tearing and conformality issues can arise during the removal and transfer processes. Processes for forming a composite structure by manipulating a two-dimensional material, such as graphene or graphene-base material, can include: providing a two-dimensional material adhered to a growth substrate; depositing a supporting layer on the two-dimensional material while the two-dimensional material is adhered to the growth substrate; and releasing the two-dimensional material from the growth substrate, the two-dimensional material remaining in contact with the supporting layer following release of the two-dimensional material from the growth substrate.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: December 10, 2019
    Assignee: Lockheed Martin Corporation
    Inventors: Steven Lloyd Sinsabaugh, Peter V. Bedworth, David Francis Casey, Jr., Scott E. Heise, Steven W. Sinton, Randall Mark Stoltenberg, Jacob Louis Swett
  • Patent number: 10470314
    Abstract: The present disclosure describes methods of soldering on printed circuits, and, more specifically, to methods of using a copper-containing layer or copper “ink” in low-temperature soldering using established solder processes on silver-containing layers in circuit boards. The present disclosure is also directed, in part, to a solder joint having a copper-containing layer acting as a bonding layer between a traditional solder and a silver-containing layer “ink” on a printed circuit board. The low-temperature forming of the solder joint occurs at or below a temperature of 300° C. and occurs via at least one of sintering, photosintering, lasersintering, local resistive heating, or electrochemical deposition. The methods disclosed can satisfy the growing demand for creating reliable interconnection joints that can be used in next generation electronics and printed electrical circuit boards.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: November 5, 2019
    Assignee: Lockheed Martin Corporation
    Inventors: Randall Mark Stoltenberg, Nathan Khosla
  • Patent number: 10283482
    Abstract: Wire bonding operations can be facilitated through the use of metal nanoparticle compositions. Both ball bonding and wedge bonding processes can be enhanced in this respect. Wire bonding methods can include providing a wire payout at a first location from a rolled wire source via a dispensation head, contacting a first metal nanoparticle composition and a first portion of the wire payout with a bonding pad, and at least partially fusing metal nanoparticles in the first metal nanoparticle composition together to form an adhering interface between the bonding pad and the first portion of the wire payout. The adhering interface can have a nanoparticulate morphology. Wire bonding systems can include a rolled wire source, a dispensation head configured to provide a wire payout, and an applicator configured to place a metal nanoparticle composition upon at least a portion of the wire payout or upon a bonding pad.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 7, 2019
    Assignee: Lockheed Martin Corporation
    Inventors: Randall Mark Stoltenberg, Alfred A. Zinn
  • Publication number: 20190036234
    Abstract: A cable can be used to facilitate electrical connections between electrical components. The cable can include a plurality of cable strands forming a void space. An adhesive paste can be applied within the void space. The adhesive paste can include a plurality of metallic nanoparticles. The metallic nanoparticles can fuse with each other and with the plurality of cable strands when energy is applied the connector and the cable. The metallic nanoparticles can include a surfactant, which can be displaced as pressure is applied. Heat can be applied to the adhesive paste to fuse the metallic nanoparticles.
    Type: Application
    Filed: July 25, 2017
    Publication date: January 31, 2019
    Inventors: Randall Mark STOLTENBERG, Alfred ZINN
  • Publication number: 20180270962
    Abstract: A circuit assembly can be made by adhering a conductive element to a substrate with an adhesive. A first layer including an adhesive can be applied over at least a portion of a surface of the substrate. A second layer including a conductive metal can be applied over at least a portion of the first layer. The first layer and the second layer can be exposed to a temperature for a duration of time to (1) fuse the conductive metal together in at least a portion of the first layer and (2) cure the adhesive of the second layer. The fusing can be substantially complete before the curing is substantially complete to enhance bonding of the adhesive to the fused conductive metal.
    Type: Application
    Filed: March 17, 2017
    Publication date: September 20, 2018
    Inventors: Randall Mark STOLTENBERG, Alfred A. ZINN
  • Publication number: 20180138143
    Abstract: Wire bonding operations can be facilitated through the use of metal nanoparticle compositions. Both ball bonding and wedge bonding processes can be enhanced in this respect. Wire bonding methods can include providing a wire payout at a first location from a rolled wire source via a dispensation head, contacting a first metal nanoparticle composition and a first portion of the wire payout with a bonding pad, and at least partially fusing metal nanoparticles in the first metal nanoparticle composition together to form an adhering interface between the bonding pad and the first portion of the wire payout. The adhering interface can have a nanoparticulate morphology. Wire bonding systems can include a rolled wire source, a dispensation head configured to provide a wire payout, and an applicator configured to place a metal nanoparticle composition upon at least a portion of the wire payout or upon a bonding pad.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 17, 2018
    Inventors: Randall Mark STOLTENBERG, Alfred A. ZINN
  • Patent number: 9881895
    Abstract: Wire bonding operations can be facilitated through the use of metal nanoparticle compositions. Both ball bonding and wedge bonding processes can be enhanced in this respect. Wire bonding methods can include providing a wire payout at a first location from a rolled wire source via a dispensation head, contacting a first metal nanoparticle composition and a first portion of the wire payout with a bonding pad, and at least partially fusing metal nanoparticles in the first metal nanoparticle composition together to form an adhering interface between the bonding pad and the first portion of the wire payout. The adhering interface can have a nanoparticulate morphology. Wire bonding systems can include a rolled wire source, a dispensation head configured to provide a wire payout, and an applicator configured to place a metal nanoparticle composition upon at least a portion of the wire payout or upon a bonding pad.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: January 30, 2018
    Assignee: Lockheed Martin Corporation
    Inventors: Randall Mark Stoltenberg, Alfred A. Zinn
  • Publication number: 20170053895
    Abstract: Wire bonding operations can be facilitated through the use of metal nanoparticle compositions. Both ball bonding and wedge bonding processes can be enhanced in this respect. Wire bonding methods can include providing a wire payout at a first location from a rolled wire source via a dispensation head, contacting a first metal nanoparticle composition and a first portion of the wire payout with a bonding pad, and at least partially fusing metal nanoparticles in the first metal nanoparticle composition together to form an adhering interface between the bonding pad and the first portion of the wire payout. The adhering interface can have a nanoparticulate morphology. Wire bonding systems can include a rolled wire source, a dispensation head configured to provide a wire payout, and an applicator configured to place a metal nanoparticle composition upon at least a portion of the wire payout or upon a bonding pad.
    Type: Application
    Filed: August 10, 2016
    Publication date: February 23, 2017
    Inventors: Randall Mark STOLTENBERG, Alfred A. ZINN
  • Publication number: 20150217219
    Abstract: It can be difficult to remove atomically thin films, such as graphene, graphene-based material and other two-dimensional materials, from a growth substrate and then to transfer the thin films to a secondary substrate. Tearing and conformality issues can arise during the removal and transfer processes. Processes for forming a composite structure by manipulating a two-dimensional material, such as graphene or graphene-base material, can include: providing a two-dimensional material adhered to a growth substrate; depositing a supporting layer on the two-dimensional material while the two-dimensional material is adhered to the growth substrate; and releasing the two-dimensional material from the growth substrate, the two-dimensional material remaining in contact with the supporting layer following release of the two-dimensional material from the growth substrate.
    Type: Application
    Filed: January 29, 2015
    Publication date: August 6, 2015
    Inventors: Steven Lloyd SINSABAUGH, Peter V. BEDWORTH, David Francis CASEY, JR., Scott E. HEISE, Steven W. SINTON, Randall Mark STOLTENBERG, Jacob Louis SWETT
  • Patent number: 9005483
    Abstract: Nanoparticle paste formulations can be configured to maintain a fluid state, promote dispensation, and mitigate crack formation during nanoparticle fusion. Such nanoparticle paste formulations can contain an organic matrix and a plurality of metal nanoparticles dispersed in the organic matrix, where the plurality of metal nanoparticles constitute about 30% to about 90% of the nanoparticle paste formulation by weight. The nanoparticle paste formulations can maintain a fluid state and be dispensable through a micron-size aperture. The organic matrix can contain one or more organic solvents, such as the combination of one or more hydrocarbons, one or more alcohols, one or more amines, and one or more organic acids. Optionally, the nanoparticle paste formulations can contain about 0.01 to about 15 percent by weight micron-scale metal particles or other additives.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: April 14, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Alfred A. Zinn, Andrew Fried, Tim Stachowiak, Jerome Chang, Randall Mark Stoltenberg
  • Publication number: 20140374079
    Abstract: Materials that readily adhere to and conform to various surfaces can be desirable for a number of applications. In heat transfer and thermal management applications, for example, conformable materials can be used in establishing a thermal interface between a heat source and a heat sink. There are limited materials that provide good thermal conductivity values while maintaining capabilities to readily adhere and conform to a surface. Compositions including a conformable and adhesive solid can include a reaction product formed by heating a mixture containing a plurality of metal nanoparticles, one or more amines, and one or more carboxylic acids. The compositions can further include one or more additives dispersed in the conformable and adhesive solid.
    Type: Application
    Filed: June 16, 2014
    Publication date: December 25, 2014
    Inventors: Alfred A. ZINN, Jerome Chang, Randall Mark Stoltenberg