Patents by Inventor Randall Peter Luhta

Randall Peter Luhta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10219759
    Abstract: A method includes performing a contrast enhanced computed tomography (CT) scan of tissue of interest of a subject, with an imaging system having a radiation source and a detector array, in which a peak contrast enhancement of the tissue of interest, a full range of motion of the tissue of interest, and an entire volume of interest of the tissue of interest are concurrently imaged during a single rotation of the radiation source and the detector array of the imaging system over an entire or a predetermined sub-portion of a breathing cycle.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: March 5, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Paul Harvey Klahr, Ekta Dhawal Dharaiya, Scott Kenneth Pohlman, Randall Peter Luhta
  • Patent number: 9924910
    Abstract: A method includes performing a contrast enhanced computed tomography (CT) scan of tissue of interest of a subject, with an imaging system (100) having a radiation source (112) and a detector array (118), in which a peak contrast enhancement of the tissue of interest, a full range of motion of the tissue of interest, and an entire volume of interest of the tissue of interest are concurrently imaged during a single rotation of the radiation source and the detector array of the imaging system over an entire or a predetermined sub-portion of a breathing cycle.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: March 27, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Paul Harvey Klahr, Ekta Dhawal Dharaiya, Scott Kenneth Pohlman, Randall Peter Luhta
  • Patent number: 9638810
    Abstract: A detector array (112) includes at least one detector pixel (306) with a cavity (400) that defines a three dimensional volume. A surface of the cavity includes at least two photosensitive regions and a non-photosensitive region there between, defining at least two sub-pixels (306i, 3062) which detect light photons traversing within the three dimensional cavity and produce respective signals indicative thereof. The detector array further includes a scintillator (302), including a first sub-portion that is located in the cavity and which emits the light photons in response to absorbing x-ray photons.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: May 2, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Marc Anthony Chappo, Randall Peter Luhta
  • Patent number: 9599725
    Abstract: A method includes obtaining a photosensor substrate (236) having two opposing major surfaces. One of the two opposing major surfaces includes at least one photosensor row (230) of at least one photosensor element (232, 234), and the obtained photosensor substrate has a thickness equal to or greater than one hundred microns. The method further includes optically coupling a scintillator array (310) to the photosensor substrate. The scintillator array includes at least one complementary scintillator row (224) of at least one complementary scintillator element (226, 228), and the at least one complementary scintillator row is optically coupled to the at least one photosensor row (230) and the at least one complementary scintillator element is optically coupled to the at least one photosensor element.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: March 21, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Randall Peter Luhta, Rodney Arnold Mattson
  • Patent number: 9357973
    Abstract: An imaging system (300) includes a radiation source (308) that emits radiation from a focal spot (312) in a direction of an examination region. The imaging system further includes a beam shaper (314), located between the focal spot and the examination region, that shapes an x-ray transmission profile of the radiation emitted from the source and incident on the beam shaper such that the radiation leaving the beam shaper has a pre-determined transmission profile.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: June 7, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rodney Arnold Mattson, Randall Peter Luhta
  • Publication number: 20160154121
    Abstract: A method includes obtaining a photosensor substrate (236) having two opposing major surfaces. One of the two opposing major surfaces includes at least one photosensor row (230) of at least one photosensor element (232, 234), and the obtained photosensor substrate has a thickness equal to or greater than one hundred microns. The method further includes optically coupling a scintillator array (310) to the photosensor substrate. The scintillator array includes at least one complementary scintillator row (224) of at least one complementary scintillator element (226, 228), and the at least one complementary scintillator row is optically coupled to the at least one photosensor row (230) and the at least one complementary scintillator element is optically coupled to the at least one photosensor element.
    Type: Application
    Filed: February 3, 2016
    Publication date: June 2, 2016
    Inventors: Randall Peter LUHTA, Rodney Arnold MATTSON
  • Patent number: 9318524
    Abstract: An imaging apparatus (400) includes a detector array (412) with at least one detector tile (418). The detector tile includes a photosensor array (422) with a two dimensional array of individual photosensitive detector pixels (424) located within a non-photosensitive area (426) and readout electronics (432) coupled to the photosensor array. The readout electronics includes individual analog readout channel wells (602, 604) corresponding to the individual detector pixels, wherein an analog readout channel well electrically isolates analog electrical components therein from analog electrical components in other analog readout channel wells. Decoupling circuitry optionally is located in at least one of metal layers of the individual analog readout channels or in the individual analog readout channel wells.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: April 19, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Marc Anthony Chappo, Randall Peter Luhta, Chris J. Vrettos
  • Patent number: 9314220
    Abstract: The invention relates to a rotor comprising a radiation source having a focal spot for radiating beam towards a subject, detection means for generating signals responsive to energy attenuation of said beam and a circular body having a cavity for housing the radiation source, and a circle arc-shaped surface on which the detection means are mounted. The circle arc-shaped surface is placed opposite to the cavity with respect to the subject, said cavity comprising an inside surface mounted with a shield for shielding the radiation not towards the subject. In this way, the conventional housing for radiation source and shielding are removed, resulting in reduction of focal spot motion caused by motion of the conventional housing. Furthermore, this invention proposes to mount the detection means directly on the circular body without an intermediate structural housing that reduces the detector modules motion relative to the focal spot.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: April 19, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Randall Peter Luhta, Ronald Sharpless, Lester Miller
  • Patent number: 9316751
    Abstract: An imaging apparatus (400) includes a detector array (412) with at least one detector tile (418). The detector tile includes a photosensor array (422) with a two dimensional array of individual photosensitive detector pixels (424) located within a non-photosensitive area (426). The imaging apparatus also includes readout electronics (432) coupled to the photosensor array and including individual readout channel wells (602, 604) corresponding to the individual detector pixels. The imaging apparatus also includes an anti-aliasing filter (800) for a detector pixel that is located in at least one of a region of the photosensor array corresponding to the detector pixel or a region of the readout electronics corresponding to the detector pixel.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: April 19, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Marc Anthony Chappo, Randall Peter Luhta
  • Patent number: 9301378
    Abstract: An imaging system (300) includes a detector array (314) with direct conversion detector pixels that detect radiation traversing an examination region of the imaging system and generate a signal indicative of the detected radiation, a pulse shaper (316) configured to alternatively process the signal indicative of detected radiation generated by the detector array or a set of test pulses having different and known heights that correspond to different and known energy levels and to generate output pulses having heights indicative of the energy of the processed detected radiation or set of test pulses, and a thresholds adjuster (330) configured to analyze the heights of the output pulses corresponding to the set of test pulses in connection with the heights of set of test pulses and a set of predetermined fixed energy thresholds and generate a threshold adjustment signal indicative of a baseline based on a result of the analysis.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: March 29, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roger Steadman Booker, Randall Peter Luhta, Christoph Herrmann
  • Patent number: 9281422
    Abstract: A method includes obtaining a photosensor substrate (236) having two opposing major surfaces. One of the two opposing major surfaces includes at least one photosensor row (230) of at least one photosensor element (232, 234), and the obtained photosensor substrate has a thickness equal to or greater than one hundred microns. The method further includes optically coupling a scintillator array (310) to the photosensor substrate. The scintillator array includes at least one complementary scintillator row (224) of at least one complementary scintillator element (226, 228), and the at least one complementary scintillator row is optically coupled to the at least one photosensor row (230) and the at least one complementary scintillator element is optically coupled to the at least one photosensor element.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: March 8, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Randall Peter Luhta, Rodney Arnold Mattson
  • Publication number: 20150305692
    Abstract: A method includes performing a contrast enhanced computed tomography (CT) scan of tissue of interest of a subject, with an imaging system having a radiation source and a detector array, in which a peak contrast enhancement of the tissue of interest, a full range of motion of the tissue of interest, and an entire volume of interest of the tissue of interest are concurrently imaged during a single rotation of the radiation source and the detector array of the imaging system over an entire or a predetermined sub-portion of a breathing cycle.
    Type: Application
    Filed: July 6, 2015
    Publication date: October 29, 2015
    Inventors: Paul Harvey KLAHR, Ekta Dhawal DHARAIYA, Scott Kenneth POHLMAN, Randall Peter LUHTA
  • Publication number: 20150276939
    Abstract: A detector array (112) includes at least one detector pixel (306) with a cavity (400) that defines a three dimensional volume. A surface of the cavity includes at least two photosensitive regions and a non-photosensitive region there between, defining at least two sub-pixels (306i, 3062) which detect light photons traversing within the three dimensional cavity and produce respective signals indicative thereof. The detector array further includes a scintillator (302), including a first sub-portion that is located in the cavity and which emits the light photons in response to absorbing x-ray photons.
    Type: Application
    Filed: November 22, 2013
    Publication date: October 1, 2015
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Marc Anthony Chappo, Randall Peter Luhta
  • Patent number: 9121950
    Abstract: An imaging detector (214) includes a scintillator array (216) including a scintillator element (228) and a material (230) and a photosensor array (218) including a detector element (222) having a light sensitive region (224) and a non-sensitive region (226). The light sensitive region is separated from the scintillator element by a gap, the light sensitive region is in one-to-one mechanical alignment with the scintillator element, and the non-sensitive region is in mechanical alignment with the material. The detector further includes structure (234) that includes one or more material free channels. The structure is located between the non-sensitive region and the material and not between the light sensitive region and the scintillator element. An optical adhesive (232) is located in the gap, filling the entire gap, and mechanically and optically coupling the light sensitive region and the scintillator element.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: September 1, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Randall Peter Luhta, Marc Anthony Chappo, Brian E. Harwood, Rodney Arnold Mattson
  • Publication number: 20150090887
    Abstract: An imaging apparatus (400) includes a detector array (412) with at least one detector tile (418). The detector tile includes a photosensor array (422) with a two dimensional array of individual photosensitive detector pixels (424) located within a non-photosensitive area (426) and readout electronics (432) coupled to the photosensor array. The readout electronics includes individual analog readout channel wells (602, 604) corresponding to the individual detector pixels, wherein an analog readout channel well electrically isolates analog electrical components therein from analog electrical components in other analog readout channel wells. Decoupling circuitry optionally is located in at least one of metal layers of the individual analog readout channels or in the individual analog readout channel wells.
    Type: Application
    Filed: April 11, 2013
    Publication date: April 2, 2015
    Inventors: Marc Anthony Chappo, Randall Peter Luhta, Chris J. Vrettos
  • Publication number: 20150060681
    Abstract: An imaging apparatus (400) includes a detector array (412) with at least one detector tile (418). The detector tile includes a photosensor array (422) with a two dimensional array of individual photosensitive detector pixels (424) located within a non-photosensitive area (426). The imaging apparatus also includes readout electronics (432) coupled to the photosensor array and including individual readout channel wells (602, 604) corresponding to the individual detector pixels. The imaging apparatus also includes an anti-aliasing filter (800) for a detector pixel that is located in at least one of a region of the photosensor array corresponding to the detector pixel or a region of the readout electronics corresponding to the detector pixel.
    Type: Application
    Filed: April 15, 2013
    Publication date: March 5, 2015
    Inventors: Marc Anthony Chappo, Randall Peter Luhta
  • Publication number: 20140316231
    Abstract: An ECG electrode is provided which can be placed within the direct path of x-rays during an imaging scan without inducing an x-ray induced erroneous current. The ECG electrode has a support element with a conductive post on one side electrically connected to a conductive plate on the other side. A dissipative anti-static element in or near the ECG electrode dissipates static electricity which forms on the surfaces of the insulating components in the ECG electrode. The dissipative anti-static element may be, for example, a slightly conductive property of the bulk material used to make the insulating material, or a conductive coating added to the insulating material surfaces. The dissipative anti-static element may also be incorporated in the clamp attached to the conductive post. In a further embodiment, an ion blower aimed at the ECG electrode may be used to remove static electricity.
    Type: Application
    Filed: November 13, 2012
    Publication date: October 23, 2014
    Inventors: Randall Peter Luhta, Allan Joseph Peusek, Brandon Keller Richards, James Thomas Richards, David Dennis Salk
  • Publication number: 20140254749
    Abstract: An imaging system (300) includes a detector array (314) with direct conversion detector pixels that detect radiation traversing an examination region of the imaging system and generate a signal indicative of the detected radiation, a pulse shaper (316) configured to alternatively process the signal indicative of detected radiation generated by the detector array or a set of test pulses having different and known heights that correspond to different and known energy levels and to generate output pulses having heights indicative of the energy of the processed detected radiation or set of test pulses, and a thresholds adjuster (330) configured to analyze the heights of the output pulses corresponding to the set of test pulses in connection with the heights of set of test pulses and a set of predetermined fixed energy thresholds and generate a threshold adjustment signal indicative of a baseline based on a result of the analysis.
    Type: Application
    Filed: October 12, 2012
    Publication date: September 11, 2014
    Inventors: Roger Steadman Booker, Randall Peter Luhta, Christoph Herrmann
  • Publication number: 20140112431
    Abstract: An imaging system (300) includes a radiation source (308) that emits radiation from a focal spot (312) in a direction of an examination region. The imaging system further includes a beam shaper (314), located between the focal spot and the examination region, that shapes an x-ray transmission profile of the radiation emitted from the source and incident on the beam shaper such that the radiation leaving the beam shaper has a pre-determined transmission profile.
    Type: Application
    Filed: June 5, 2012
    Publication date: April 24, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Rodney Arnold Mattson, Randall Peter Luhta
  • Publication number: 20140029724
    Abstract: An imaging detector (214) includes a scintillator array (216) including a scintillator element (228) and a material (230) and a photosensor array (218) including a detector element (222) having a light sensitive region (224) and a non-sensitive region (226). The light sensitive region is separated from the scintillator element by a gap, the light sensitive region is in one-to-one mechanical alignment with the scintillator element, and the non-sensitive region is in mechanical alignment with the material. The detector further includes structure (234) that includes one or more material free channels. The structure is located between the non-sensitive region and the material and not between the light sensitive region and the scintillator element. An optical adhesive (232) is located in the gap, filling the entire gap, and mechanically and optically coupling the light sensitive region and the scintillator element.
    Type: Application
    Filed: April 5, 2012
    Publication date: January 30, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Randall Peter Luhta, Marc Anthony Chappo, Brian E. Harwood, Rodney Arnold Mattson