Patents by Inventor Randall S. Stanley

Randall S. Stanley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7426233
    Abstract: A system and method are provided that can detect any part of a multipath impulse radio signal. More specifically, the method compares a template pulse train and the multipath impulse radio signal to obtain a comparison result. The system performs a threshold check on the comparison result. If the comparison result passes the threshold check, the system locks onto any part of the multipath impulse radio signal including a direct path part and at least one multipath reflection part. The system may also perform a quick check, a sychronization check, and/or a command check of the multipath impulse radio signal.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: September 16, 2008
    Assignee: Time Domain Corporation
    Inventors: James L. Richards, Ivan A. Cowie, Larry W. Fullerton, Mark D. Roberts, Randall S. Stanley, William D. Welch
  • Patent number: 7418029
    Abstract: A system and method are provided that can detect any part of a multipath impulse radio signal. More specifically, the method compares a template pulse train and the multipath impulse radio signal to obtain a comparison result. The system performs a threshold check on the comparison result. If the comparison result passes the threshold check, the system locks onto any part of the multipath impulse radio signal including a direct path part and at least one multipath reflection part. The system may also perform a quick check, a synchronization check, and/or a command check of the multipath impulse radio signal.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 26, 2008
    Assignee: Time Domain Corporation
    Inventors: James L. Richards, Ivan A. Cowie, Larry W. Fullerton, Mark D. Roberts, Randall S. Stanley, William D. Welch
  • Patent number: 6922166
    Abstract: A system and a method for distance measurement utilizes a radio system. The distance is measured in coarse resolution, and in fine resolution that corresponds to distance attributes. The distance between first and second radio transceivers is determined from the coarse distance and the fine distance attributes.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: July 26, 2005
    Assignee: Time Domain Corporation
    Inventors: James L. Richards, Larry W. Fullerton, David C. Meigs, Randall S. Stanley, Ivan A. Cowie
  • Publication number: 20040135719
    Abstract: A system and a method for distance measurement utilizes a radio system. The distance is measured by determining the time it takes a pulse train to travel from a first radio transceiver to a second radio transceiver and then from the second radio transceiver back to the first radio transceiver. The actual measurement is a two step process. In the first step, the distance is measured in coarse resolution, and in the second step, the distance is measured in fine resolution. A first pulse train is transmitted using a transmit time base from the first radio transceiver. The first pulse train is received at a second radio transceiver. The second radio transceiver synchronizes its time base with the first pulse train before transmitting a second pulse train back to the first radio transceiver, which then synchronizes a receive time base with the second pulse train. The time delay between the transmit time base and the receive time base can then be determined.
    Type: Application
    Filed: January 5, 2004
    Publication date: July 15, 2004
    Applicant: TIME DOMAIN CORPORATION
    Inventors: James L. Richards, Larry W. Fullerton, David C. Meigs, Randall S. Stanley, Ivan A. Cowie
  • Patent number: 6556621
    Abstract: A system and method for detecting an impulse radio signal obtains a template pulse train and a received impulse radio signal. The system compares the template pulse train and the received impulse radio signal to obtain a comparison result. The system performs a threshold check on the comparison result. If the comparison result passes the threshold check, the system locks on the received impulse radio signal. The system may also perform a quick check, a sychronization check, and/or a command check of the impulse radio signal.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: April 29, 2003
    Assignee: Time Domain Corporation
    Inventors: James L. Richards, Larry W. Fullerton, Ivan A. Cowie, William D. Welch, Jr., Randall S. Stanley
  • Patent number: 6295019
    Abstract: A system and a method for distance measurement utilizes a radio system. The distance is measured by determining the time it takes a pulse train to travel from a first radio transceiver to a second radio transceiver and then from the second radio transceiver back to the first radio transceiver. The actual measurement is a two step process. In the first step, the distance is measured in coarse resolution, and in the second step, the distance is measured in fine resolution. A first pulse train is transmitted using a transmit time base from the first radio transceiver. The first pulse train is received at a second radio transceiver. The second radio transceiver synchronizes its time base with the first pulse train before transmitting a second pulse train back to the first radio transceiver, which then synchronizes a receive time base with the second pulse train. The time delay between the transmit time base and the receive time base can then be determined.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: September 25, 2001
    Assignee: Time Domain Corporation
    Inventors: James L. Richards, Larry W. Fullerton, David C. Meigs, Randall S. Stanley, Ivan A. Cowie
  • Patent number: 6111536
    Abstract: A system and a method for distance measurement utilizes a radio system. The distance is measured by determining the time it takes a pulse train to travel from a first radio transceiver to a second radio transceiver and then from the second radio transceiver back to the first radio transceiver. The actual measurement is a two step process. In the first step, the distance is measured in coarse resolution, and in the second step, the distance is measured in fine resolution. A first pulse train is transmitted using a transmit time base from the first radio transceiver. The first pulse train is received at a second radio transceiver. The second radio transceiver synchronizes its time base with the first pulse train before transmitting a second pulse train back to the first radio transceiver, which then synchronizes a receive time base with the second pulse train. The time delay between the transmit time base and the receive time base can then be determined.
    Type: Grant
    Filed: May 26, 1998
    Date of Patent: August 29, 2000
    Assignee: Time Domain Corporation
    Inventors: James L. Richards, Larry W. Fullerton, David C. Meigs, Randall S. Stanley, Ivan A. Cowie