Patents by Inventor Randall Spencer

Randall Spencer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140234387
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Application
    Filed: April 25, 2014
    Publication date: August 21, 2014
    Applicant: MiMedx Group, Inc.
    Inventors: John Daniel, Randall Spencer, John Russo, Robert Tofe
  • Publication number: 20140214176
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Inventors: John Daniel, Robert Tofe, Randall Spencer, John Russo
  • Publication number: 20140205646
    Abstract: Described herein are tissue grafts derived from the placenta that possess good adhesion to biological tissues and are useful in would healing applications. In one aspect, the tissue graft includes (1) two or more layers of amnion, wherein at least one layer of amnion is cross-linked, (2) two or more layers of chorion, wherein at least one layer of amnion is cross-linked, or (3) one or more layers of amnion and chorion, wherein at least one layer of amnion and/or chorion is cross-linked. In another aspect, the grafts are composed of amnion and chorion cross-linked with one another. In a further aspect, the grafts have one or more layers sandwiched between the amnion and chorion membranes. The amnion and/or the chorion are treated with a cross-linking agent prior to the formation of the graft. Also described herein are methods for making and using the tissue grafts.
    Type: Application
    Filed: February 13, 2012
    Publication date: July 24, 2014
    Inventors: Brenda S. Morse, Somaly Sith, Randall Spencer, John Daniel
  • Patent number: 8709493
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: April 29, 2014
    Assignee: Mimedx Group, Inc.
    Inventors: John Daniel, Robert Tofe, Randall Spencer, John Russo
  • Patent number: 8703206
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: April 22, 2014
    Assignee: MiMedx Group, Inc.
    Inventors: John Daniel, Robert Tofe, Randall Spencer, John F. Russo
  • Patent number: 8703207
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: April 22, 2014
    Assignee: Mimedx Group, Inc.
    Inventors: John Daniel, Randall Spencer, Robert Tofe, John Russo
  • Publication number: 20140050788
    Abstract: Described herein are compositions composed of micronized placental components, extracts of micronized placental components, and pharmaceutical compositions thereof. The compositions have numerous medical applications. Methods for making and using the micronized compositions and the extracts thereof are also described herein.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 20, 2014
    Applicant: MiMedx Group Inc.
    Inventors: John Daniel, Randall Spencer, Somaly Sith
  • Patent number: 8642092
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: February 4, 2014
    Assignee: Mimedx Group, Inc.
    Inventors: John Daniel, Randall Spencer, John Russo, Robert Tofe
  • Publication number: 20130344162
    Abstract: Described herein are composition composed of micronized placental components and pharmaceutical compositions thereof. The compositions have numerous medical applications. Methods for making and using the micronized compositions are also described herein.
    Type: Application
    Filed: March 6, 2013
    Publication date: December 26, 2013
    Inventors: Brenda S. MORSE, Somaly SITH, Randall SPENCER, Steven RAY, John DANIEL, Robert Tofe
  • Publication number: 20130317624
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Application
    Filed: August 2, 2013
    Publication date: November 28, 2013
    Applicant: MiMedx Group, Inc.
    Inventors: John Daniel, Randall Spencer
  • Publication number: 20130230561
    Abstract: Described herein are placental tissue grafts produced by chemical dehydration followed by freeze-drying the placental tissue to produce the tissue graft. The tissue grafts retain their biological properties preferably at the same level as the placental tissues before they are processed. The placental tissue grafts have numerous medical applications. Methods for making the tissue graft compositions are also described herein.
    Type: Application
    Filed: November 30, 2012
    Publication date: September 5, 2013
    Applicant: MIMEDX GROUP, INC.
    Inventors: John Daniel, Randall Spencer, Steven Ray
  • Publication number: 20130224159
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Application
    Filed: April 11, 2013
    Publication date: August 29, 2013
    Applicant: MIMEDX GROUP, INC.
    Inventors: John Daniel, Randall Spencer
  • Publication number: 20130197665
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 1, 2013
    Inventors: John Daniel, Robert Tofe, Randall Spencer, John Russo
  • Patent number: 8409626
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: April 2, 2013
    Assignee: MiMedx Group, Inc.
    Inventors: John Daniel, Robert Tofe, Randall Spencer, John Russo
  • Patent number: 8372439
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: February 12, 2013
    Assignee: Mimedx Group, Inc.
    Inventors: John Daniel, Robert Tofe, Randall Spencer, John Russo
  • Patent number: 8372438
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: February 12, 2013
    Assignee: Mimedx Group, Inc.
    Inventors: John Daniel, Robert Tofe, Randall Spencer, John Russo
  • Patent number: 8357403
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: January 22, 2013
    Assignee: Mimedx Group, Inc.
    Inventors: John Daniel, Robert Tofe, Randall Spencer, John Russo
  • Patent number: 8323701
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: December 4, 2012
    Assignee: Mimedx Group, Inc.
    Inventors: John Daniel, Robert Tofe, Randall Spencer, John Russo
  • Publication number: 20120294909
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Application
    Filed: August 7, 2012
    Publication date: November 22, 2012
    Inventors: John Daniel, Robert Tofe, Randall Spencer, John Russo
  • Publication number: 20120294910
    Abstract: Described herein are tissue grafts derived from the placenta. The grafts are composed of at least one layer of amnion tissue where the epithelium layer has been substantially removed in order to expose the basement layer to host cells. By removing the epithelium layer, cells from the host can more readily interact with the cell-adhesion bio-active factors located onto top and within of the basement membrane. Also described herein are methods for making and using the tissue grafts. The laminin structure of amnion tissue is nearly identical to that of native human tissue such as, for example, oral mucosa tissue. This includes high level of laminin-5, a cell adhesion bio-active factor show to bind gingival epithelia-cells, found throughout upper portions of the basement membrane.
    Type: Application
    Filed: August 7, 2012
    Publication date: November 22, 2012
    Inventors: John Daniel, Robert Tofe, Randall Spencer, John Russo