Patents by Inventor Randall Urdahl

Randall Urdahl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8736174
    Abstract: A plasma generation device includes: a substrate having a first surface and a second surface; a stripline resonant ring disposed on the first surface of the substrate, and defining a discharge gap; a pair of electrode extensions connected to the stripline resonant ring at the discharge gap; a ground plane disposed on the second surface of the substrate; a gas flow element configured to flow gas between at least one of: (1) the discharge gap, and (2) the pair of electrode extensions; and a structure disposed adjacent the substrate to form an enclosure that substantially encloses at least a region including the discharge gap and the electrode extensions, the enclosure being adapted to contain a plasma.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: May 27, 2014
    Assignee: Agilent Technologies, Inc.
    Inventors: Randall Urdahl, James Edward Cooley, Gregory S. Lee, August Jon Hidalgo, Martin L. Guth
  • Patent number: 8217343
    Abstract: A device includes a first substrate having a principal surface having a plurality of sample sites having a corresponding sample; a second substrate having a principal surface facing and spaced apart from the principal surface of the first substrate, the second substrate having a plurality of ultraviolet emission sites corresponding to the sample sites of the first substrate, each of the ultraviolet emission sites being spaced apart from and facing a corresponding one of the sample sites of the first substrate, each of the ultraviolet emission sites being configured to emit ultraviolet light to a corresponding one of the sample sites on the first substrate, and to ionize at least a portion of a sample provided at each sample site; and an ion extraction device configured to extract ions from a gap between the first substrate and the structure.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: July 10, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: James Edward Cooley, Viorica Lopez-Avila, Randall Urdahl
  • Publication number: 20110180699
    Abstract: A device includes a first substrate having a principal surface having a plurality of sample sites having a corresponding sample; a second substrate having a principal surface facing and spaced apart from the principal surface of the first substrate, the second substrate having a plurality of ultraviolet emission sites corresponding to the sample sites of the first substrate, each of the ultraviolet emission sites being spaced apart from and facing a corresponding one of the sample sites of the first substrate, each of the ultraviolet emission sites being configured to emit ultraviolet light to a corresponding one of the sample sites on the first substrate, and to ionize at least a portion of a sample provided at each sample site; and an ion extraction device configured to extract ions from a gap between the first substrate and the structure.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 28, 2011
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: James Edward COOLEY, Viorica LOPEZ-AVILA, Randall URDAHL
  • Publication number: 20110175531
    Abstract: A plasma generation device includes: a substrate having a first surface and a second surface; a stripline resonant ring disposed on the first surface of the substrate, and defining a discharge gap; a pair of electrode extensions connected to the stripline resonant ring at the discharge gap; a ground plane disposed on the second surface of the substrate; a gas flow element configured to flow gas between at least one of: (1) the discharge gap, and (2) the pair of electrode extensions; and a structure disposed adjacent the substrate to form an enclosure that substantially encloses at least a region including the discharge gap and the electrode extensions, the enclosure being adapted to contain a plasma.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 21, 2011
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Randall URDAHL, James Edward COOLEY, Gregory S. LEE, August Jon HIDALGO, Martin L. GUTH
  • Publication number: 20110109226
    Abstract: An illumination device provides light to a flowing gaseous sample. The device includes a structure including a cavity configured to have a microplasma disposed therein. The cavity substantially encircles a cross-section of a channel that is configured to pass the flowing gaseous sample therethrough. The cavity is defined in part by an interior wall of the structure separating the cavity from the channel. The interior wall includes at least one orifice passing therethrough configured to provide to the flowing gaseous sample light generated by the microplasma. At least one electrode is configured to supply energy to the microplasma within the cavity.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: James Edward COOLEY, Gregory S. LEE, Arthur SCHLEIFER, Robert C. TABER, Randall URDAHL, Martin L. GUTH, Lewis R. DOVE
  • Publication number: 20070170371
    Abstract: Aspects of the invention include sample ionizing devices and methods of use thereof. Embodiments of the sample ionizing devices include a microplasma generation source with a plasma generation region, a sample input port for delivering a sample to the plasma generation region, and a gas flow element configured to flow gas through the microplasma generation source independently of the sample input port. The devices and methods of the invention find use in a variety of different applications, including analyte detection applications.
    Type: Application
    Filed: July 11, 2006
    Publication date: July 26, 2007
    Inventors: David Dutton, Randall Urdahl, Arthur Schleifer, Karen Seward