Patents by Inventor Randolph D. Williams

Randolph D. Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8793849
    Abstract: A method of fabricating a thickness shear mode (TSM) gas and organic vapor sensor having a visco-elastic polymer coating and a fundamental frequency greater than 20 MHz. The method begins by providing a piezoelectric crystal and milling a central region of the crystal. Milling the crystal creates a central oscillating region of reduced thickness surrounded by a thicker outer region. Two electrodes are then deposited in the oscillating region of the crystal—one on each side of the crystal. The oscillating region on both sides of the crystal and the electrodes are then coated with a polymer coating.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: August 5, 2014
    Assignee: University of South Florida
    Inventors: Venkat R. Bhethanabotla, Randolph D. Williams
  • Patent number: 7568377
    Abstract: A thickness shear mode (TSM) sensor having a visco-elastic polymer coating and a fundamental frequency greater than 20 MHz useful for organic vapor or gas detection. The TSM quartz resonators at a fundamental frequency of 96 MHz were evaluated for their performance in organic vapor sensing applications and results were compared with the performance of 10 and 20 MHz resonators. These devices were produced by chemical milling of AT-cut quartz. Seven test organic vapors were utilized at concentrations ranging from 0.2 volume percent to 13.7 volume percent in the vapor phase. In all cases, the rubbery polymer polyisobutylene was used as a sensing layer. Detailed results for various sensor parameters such as sensitivity, baseline noise and drift, limit of detection, response and recovery times, dynamic range, and repeatability for the 96 MHz device were compared with those for 10 and 20 MHz devices. The test case of benzene/polyisobutylene was chosen to make these detailed comparisons.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: August 4, 2009
    Assignee: University of South Florida
    Inventors: Venkat R. Bhethanabotla, Randolph D. Williams
  • Publication number: 20090151428
    Abstract: A thickness shear mode (TSM) sensor having a visco-elastic polymer coating and a fundamental frequency greater than 20 MHz useful for organic vapor or gas detection. The TSM quartz resonators at a fundamental frequency of 96 MHz were evaluated for their performance in organic vapor sensing applications and results were compared with the performance of 10 and 20 MHz resonators. These devices were produced by chemical milling of AT-cut quartz. Seven test organic vapors were utilized at concentrations ranging from 0.2 volume percent to 13.7 volume percent in the vapor phase. In all cases, the rubbery polymer polyisobutylene was used as a sensing layer. Detailed results for various sensor parameters such as sensitivity, baseline noise and drift, limit of detection, response and recovery times, dynamic range, and repeatability for the 96 MHz device were compared with those for 10 and 20 MHz devices. The test case of benzene/polyisobutylene was chosen to make these detailed comparisons.
    Type: Application
    Filed: July 28, 2006
    Publication date: June 18, 2009
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Venkat R. Bhethanabotla, Randolph D. Williams