Patents by Inventor Randolph J. Noelle

Randolph J. Noelle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6328964
    Abstract: Method for the treatment of multiple sclerosis and other T cell mediated autoimmune disorders is described. The method involves administering to a subject a therapeutically effective amount of an antagonist of a receptor on a surface of a T cell which mediates contact dependent helper effector functions, for example, an anti-gp39 antibody.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: December 11, 2001
    Assignees: Trustees of Dartmouth College, Nederlandse Organisatie Voor Teogepastnatuurwetenschappelijk Onderzoek TNO
    Inventors: Randolph J. Noelle, Eric Claassen
  • Patent number: 6312692
    Abstract: A method of treating graft-vs-host diseases by administration of bone marrow and an anti-gp39 antibody specific to human gp39 is provided.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: November 6, 2001
    Assignees: Trustees of Dartmouth College, Bristol-Myers Squibb Company
    Inventors: Randolph J. Noelle, Teresa M. Foy, Alejandro Aruffo, Jeffrey A. Ledbetter
  • Publication number: 20010033840
    Abstract: Methods for inducing T cell tolerance to a tissue or organ graft in a transplant recipeint are disclosed. The methods involve administering to a subject: 1) an allogeneic or xenogeneic cell which expresses donor antigens and which has a ligand on the cell surface which interacts with a receptor on the surface of a recipient T cell which mediates contact-dependent helper effector function; and 2) an antagonist of the receptor which inhibits interaction of the ligand with the receptor. In a preferred embodiment, the allogeneic or xenogeneic cell is a B cell, preferably a resting B cell, and the molecule on the surface of the T cell which mediates contact-dependent helper effector function is gp39. A preferred gp39 antagonist is an anti-gp39 antibody. The allogeneic or xenogeneic cell and the gp39 antagonist are typically administered to a transplant recipient prior to transplantation of the tissue or organ.
    Type: Application
    Filed: June 26, 2001
    Publication date: October 25, 2001
    Applicant: Trustees of Dartmouth College
    Inventors: Randolph J. Noelle, Fiona H. Durie
  • Patent number: 5942229
    Abstract: Methods of suppressing a humoral immune response to a thymus-dependent (TD) antigen are disclosed. The methods involve administering to a subject a TD antigen with an antagonist of a molecule which mediates contact-dependent helper effector functions. In a preferred embodiment, the antagonist is an antagonist of gp39. Primary and secondary humoral immune responses can be suppressed and suppression is prolonged.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 24, 1999
    Assignee: Trustees of Dartmouth College
    Inventors: Randolph J. Noelle, Teresa M. Foy
  • Patent number: 5902585
    Abstract: Methods for inducing T cell tolerance to a tissue or organ graft in a transplant recipeint are disclosed. The methods involve administering to a subject: 1) an allogeneic or xenogeneic cell which expresses donor antigens and which has a ligand on the cell surface which interacts with a receptor on the surface of a recipient T cell which mediates contact-dependent helper effector function; and 2) an antagonist of the receptor which inhibits interaction of the ligand with the receptor. In a preferred embodiment, the allogeneic or xenogeneic cell is a B cell, preferably a resting B cell, and the molecule on the surface of the T cell which mediates contact-dependent helper effector function is gp39. A preferred gp39 antagonist is an anti-gp39 antibody. The allogeneic or xenogeneic cell and the gp39 antagonist are typically administered to a transplant recipient prior to transplantation of the tissue or organ.
    Type: Grant
    Filed: August 5, 1997
    Date of Patent: May 11, 1999
    Assignees: University of Massachusetts Medical Center, The Trustees of Dartmouth College
    Inventors: Randolph J. Noelle, Fiona H. Durie, David C. Parker, Michael C. Appel, Nancy E. Phillips, John P. Mordes, Dale L. Grenier, Aldo A. Rossini
  • Patent number: 5876718
    Abstract: Antibodies that bind a protein gp39 (also referred to as CD40 ligand) are disclosed. Preferably, the antibodies are monoclonal antibodies of an IgG1 isotype and bind human gp39. In a preferred embodiment, an antibody of the invention binds an epitope recognized by a monoclonal antibody 24-31, produced by a hybridoma 24-31 (ATTC Accession No. HB11712) or binds an epitope recognized by a monoclonal antibody 89-76, produced by a hybridoma 89-76 (ATCC Accession No. HB 11713). Pharmaceutical compositions comprising the antibodies of the invention are also disclosed. The antibodies of the invention are useful for inhibiting B cell proliferation and differentiation, T cell responses and for inducing T cell tolerance. Nucleic acid molecules encoding anti-gp39 antibodies, or portions thereof, as well as expression vectors and host cells incorporating said nucleic acid molecules, are also encompassed by the invention.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: March 2, 1999
    Assignees: Trustees of Dartmouth College, Bristol-Myers Squibb Company
    Inventors: Randolph J. Noelle, Teresa M. Foy, Alejandro Aruffo, Jeffrey A. Ledbetter
  • Patent number: 5869049
    Abstract: Methods for inducing antigen-specific T cell tolerance are disclosed. The methods involve contacting a T cell with: 1) a cell which presents antigen to the T cell, wherein a ligand on the cell interacts with a receptor on the surface of the T cell which mediates contact-dependent helper effector function; and 2) an antagonist of the receptor on the surface of the T cell which inhibits interaction of the ligand on the antigen presenting cell with the receptor on the T cell. In a preferred embodiment, the cell which presents antigen to the T cell is a B cell and the receptor on the surface of the T cell which mediates contact-dependent helper effector function is gp39. Preferably, the antagonist is an anti-gp39 antibody or a soluble gp39 ligand (e.g., soluble CD40). The methods of the invention can be used to induce T cell tolerance to a soluble antigen or to an allogeneic cell.
    Type: Grant
    Filed: April 25, 1994
    Date of Patent: February 9, 1999
    Assignees: Trustees of Dartmouth College, University of Massachusetts Medical Center
    Inventors: Randolph J. Noelle, Teresa M. Foy, Fiona H. Durie, David C. Parker, Dale L. Greiner, Aldo A. Rossini, John P. Mordes
  • Patent number: 5833987
    Abstract: Method for the treatment of multiple sclerosis and other T cell mediated autoimmune disorders is described. The method involves administering to a subject a therapeutically effective amount of an antagonist of a receptor on a surface of a T cell which mediates contact dependent helper effector functions, for example, an anti-gp39 antibody.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 10, 1998
    Assignees: Trustees of Dartmouth College, Nederlanse Organisatie Voor Teogepastnatuurwetenschappelijk Onderzoek TNO
    Inventors: Randolph J. Noelle, Eric Claassen
  • Patent number: 5747037
    Abstract: Antibodies that bind a protein gp39 (also referred to as CD40 ligand) are disclosed. Preferably, the antibodies are monoclonal antibodies of an IgG1 isotype and bind human gp39. In a preferred embodiment, an antibody of the invention binds an epitope recognized by a monoclonal antibody 24-31, produced by a hybridoma 24-31 (ATTC Accession No. HB11712) or binds an epitope recognized by a monoclonal antibody 89-76, produced by a hybridoma 89-76 (ATCC Accession No.HB11713). Pharmaceutical compositions comprising the antibodies of the invention are also disclosed. The antibodies of the invention are useful for inhibiting B cell proliferation and differentiation, T cell responses and for inducing T cell tolerance. Nucleic acid molecules encoding anti-gp39 antibodies, or portions thereof, as well as expression vectors and host cells incorporating said nucleic acid molecules, are also encompassed by the invention.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 5, 1998
    Assignees: Bristol-Myers Squibb Company, Trustees of Dartmouth College
    Inventors: Randolph J. Noelle, Teresa M. Foy, Alejandro Aruffo, Jeffrey A. Ledbetter
  • Patent number: 5683693
    Abstract: Methods for inducing T cell unresponsiveness to a tissue or organ graft in a transplant recipeint are disclosed. The methods involve administering to a subject: 1) an allogeneic or xenogeneic cell which expresses donor antigens and which has a ligand on the cell surface which interacts with a receptor on the surface of a recipient T cell which mediates contact-dependent helper effector function; and 2) an antagonist of the receptor which inhibits interaction of the ligand with the receptor. In a preferred embodiment, the allogeneic or xenogeneic cell is a B cell, preferably a resting B cell, and the molecule on the surface of the T cell which mediates contact-dependent helper effector function is gp39. A preferred gp39 antagonist is an anti-gp39 antibody. The allogeneic or xenogeneic cell and the gp39 antagonist are typically administered to a transplant recipient prior to transplantation of the tissue or organ.
    Type: Grant
    Filed: April 25, 1994
    Date of Patent: November 4, 1997
    Assignees: Trustees of Dartmouth College, University of Massachusetts Medical Center
    Inventors: Randolph J. Noelle, Fiona H. Durie, David C. Parker, Michael C. Appel, Nancy E. Phillips, John P. Mordes, Dale L. Grenier, Aldo A. Rossini